
Contents

1 Introduction 1

2 Fundamentals 2

3 The Classical One-to-one Correspondence: O $ B 4

4 Multi-dimensional Simply Generated Trees 6

4.1 Multi-dimensional Simply Generated Trees : 6

4.2 Special Case: Multi-dimensional Ordered Trees : 8

4.3 Special Case: Multi-dimensional Binary Trees : 9

5 Monotonically Labeled Simply Generated Trees 10

5.1 Monotonically Labeled Simply Generated Trees : 10

5.2 Special Case: Monotonically Labeled Ordered Trees : 12

5.3 Special Case: Monotonically Labeled Binary Trees : 13

6 A One-to-one Correspondence: EMO2
d $ Bd 14

6.1 Identity 1 : 14

6.2 Auxiliary Tree Families : 14

6.3 Auxiliary Transformations : 18

6.4 A One-to-one Correspondence: Bd $ EMOd�EMOd : 23

7 A One-to-one Correspondence: Od $MBd 25

7.1 Identity 2 : 25

7.2 Auxiliary Tree Families : 25

7.3 Auxiliary Transformations : 27

7.4 A One-to-to Correspondence: Od $ MB2d : 30

8 Application: Analysis of the Label Distribution in EMOd and MBd 32

9 Conclusions 33

i

Two New One-to-one Correspondences on Trees

Robert Muth

March 27, 1997

Abstract. The classical one-to-one correspondence between ordered trees with n+ 1
nodes and binary trees with n nodes is generalized in two ways:

1. monotonically labeled ordered trees $ multi-dimensional binary trees

2. monotonically labeled binary trees $ multi-dimensional ordered trees

Simple generating functions for these tree classes are presented from which combina-
torial information can be computed.

1 Introduction

In this paper we present two new extensions of the classical correspondence between binary trees with n
nodes and ordered trees with n+1 nodes.

After reviewing some basic concepts in section 2 we shall devote section 3 to formalizing the classical cor-
respondence by describing graphical operations that transform ordered trees into binary trees and vice versa.

The generalized families of ordered and binary trees belong to the class of “simply generated” trees — thus
their generating functions satisfy certain (simple) types of functional equations. Given these functional equa-
tions combinatorial information can be computed by inversion. Before we describe the new correspondences
we shall extend the class of simply generated tree families to the classes of:

� Multidimensional simply generated tree families (section 4).

� Monotonically labeled simply generated tree families (section 5).

The new correspondences involve familes from both classes.

In section 6 we present the corresponence between monotonically labeled ordered trees and multidimensional
binary trees. In section 7 we present the corresponence between monotonically labeled binary trees and mul-
tidimensional ordered trees. Both correspondences reduce to the classical correspondence in the case of 1-
dimensional/1-labeled trees. Both correspondences will be stated as graphical operations that show how trees
from one family can be transformed into trees from the corresponding family.

In section 8 we shall exploit the new correspondences to obtain results about the average label distribution
in monotonically labeled ordered and binary trees with n nodes.

1

2 Fundamentals

Definition 2.1 (Tree) A rooted directed graph t = (V;E)with root r(t)2V is called an (unordered,oriented)
tree, if indeg(r(t)) = 0 and indeg(v) = 1 for all other nodes (we will use the term node instead of vertex
throughout this paper).

If (v1;v2) 2 E, v1 is called the father of v2 and v2 is called son of v1.

Two nodes v1 and v2 are called brothers, if they are sons of the same father.

If there is a path from node v1 to node v2, we call v1 a predecessor of v2 and v2 a successor of v1.

The tree t 0 = (V 0

;E0) with root r(t 0), is called a subtree of t = (V;E) if V 0

�V and E0 = E\ (V 0

�V 0

) where
V 0 consists of r(t 0) and all its successors in t.

The size of a tree t = (V;E) which is denoted by jtj is the number of its vertices (jV j).

In figures the root will be the topmost node. Edges are directed downwards, i.e. leading away from the root.
The empty tree, i.e. the tree with no nodes and edges, will be depicted by a box (2).

Definition 2.2 (Generating Function) Let F be a family of trees and let e : F ! N0 be a mapping into the
natural numbers. The generating function F(z) of F (for e) is then given by the following (formal) power
series:

F(z) = ∑
n2N0

je�1
(n)j zn

Conversely, if F(z) is a given generating function , [zn
]F(z) denotes the coefficient of zn in the formal taylor

expansion around the origin. By the inversion theorem, this coefficient will be je�1
(n)j.

If e is a mapping F ! N

d
0, we obtain in an analogous manner a generating function in d variables — a

multivariate generating function :

eF(z1; : : :;zd) = ∑
(n1;:::;nd)2N

d
0

j e�1
(n1; : : :;nd)j zn1

1 � : : : � z
nd
d

and analogously:

[zn1
1 � : : : � z

nd
d]

eF(z1; : : :;zd) = j e�1
(n1; : : : ;nd)j

Unless otherwise indicated, we shall choose the function e, used in forming our generating functions to be
the size of the tree, i.e. e(t) = jtj.

In [Fla88] Flajolet describes an intuitive way to translate recursively defined combinatorial objects into func-
tional equations defining their generating functions . The method is successful for many “size” functions e.

Giving a detailed discussion of the translation rules is outside of the scope of this paper. We will instead state
some examples that should enable the reader to apply the method.

2

Definition 2.3 (Binary Trees) The following symbolic equation defines the family of binary trees recursively
and translates the definition into a functional equation of its generating function.

= ++ +
B

B
B BB

zB(z) z= + B(z) + z B(z) + z B(z) B(z)

This can be interpreted as follows: A binary tree consists of a root to which up to two binary (sub-) trees can
be attached. The left (right) son of a node v is also denoted by LSON(v) (RSON(v)).

(By excluding the empty tree the definition above differs slightly from the definition in [Knu73].)
For the generating function B(z) of ordered trees we obtain:

B(z) = z+ zB(z)+ zB(z)+ zB(z)B(z)= z (1+2B(z)+B(z)2
) (1)

Definition 2.4 (Ordered Tree) The following symbolic equation defines the family of ordered trees recur-
sively and translates the definition into a functional equation of its generating function.

= ++O
O O O

+ . . .
O O

+
O

O(z) z= zzz O(z)O(z)O(z)O(z)O(z)+ +++ O(z) . . .

This can be interpreted as follows: An ordered tree consists of a root to which arbitrarily many ordered (sub-)
trees can be attached.

For the generating function O(z) of ordered trees we obtain:

O(z) = z+ zO(z)+ zO(z)O(z)+ zO(z)O(z)O(z)+ : : := z (1�O(z))�1 (2)

The functional equations for B(z) and O(z) are similar in structure. This motivates the introduction of a more
general concept, the simply generated trees ([MM78]). Most of the frequently used tree families are simply
generated (an important exception being unordered trees).

Definition 2.5 (Simply Generated Trees) A family of trees F is said to be simply generated, if its generat-
ing function F(z) satisfies an implicit equation: F(z) = z Θ(F(z)), where Θ(t) is an analytic function of the
form:

Θ(t) = 1+ ∑
n�1

cntn

defined in some disk jtj< R < ∞; with cn � 0 and cn > 0 for at least one n� 1.

By this definition the families O and B of ordered and binary trees are simply generated. The corresponding
Θ-functions are:

Θo(t) = 1+ t + t2
+ t3

+ : : := (1� t)�1and (3)

Θb(t) = 1+2t + t2respectively. (4)

3

3 The Classical One-to-one Correspondence: O$ B

Solving the quadratic equations for B(z) and O(z) yields the closed forms:

B(z) = (1�2z�
p

1�4z)=(2z) (5)

O(z) = (1�
p

1�4z)=2 (6)

It is well known that the coefficents of O(z) and B(z) are just the Catalan numbers (cf. [Knu73]):

[zn
] B(z) =

1
n+1

�

2n
n

�

= [zn+1
] O(z) (n� 1)

Which leads us to the classical enumeration result:

Theorem 3.1 There are as many ordered trees of size n+1 as there are binary trees of size n. More formally:
jft 2 O j jtj= n+1gj = jft 2 B j jtj= ngj.

This can be written more compactly as an equation of generating functions .

O(z) = z (B(z)+1) (7)

What is more intuitive is the structural correspondence between members of O and B. The following recipe
shows how to bijectively transform ordered trees into the corresponding binary trees (c.f.[Knu73, pages
332ff]). We will already make intuitive use of labeled trees even though they are defined later.

Given a (labeled) ordered tree, remove all edges except for those connecting a father with its leftmost son.
Then, add edges between brothers by connecting brother i with brother i+ 1 yielding an intermediate tree.
Finally rotate this intermediate tree by �π=4 and remove the root.

Example 3.2 (Application of the Classical Correspondence)

exp

red

2

3 3

4

4

5

5

1

2 3

3

4

4

5

5

1

2 3

3

4

4

5

5

Ordered Tree Intermediate Tree Binary Tree

ob

ob

When the root is removed in the last step of the transformation its labeling information is lost. To overcome
this problem we require that the root be always labeled 1.

We are now concerned with formalizing the steps of the “recipe”.

We shall call the transformation from ordered trees to binary trees expob , and the inverse transformation
redob . The graphical operations are given in Figures 1 and 2 (mi denotes the label of the corresponding
node).

4

. . .
m 1 m 2

t
1

t
2

mn
t

n

. . .

t
n

t
1

m 1

m 2

mnt
2

exp

exp exp

exp

exp

ob

ob ob

ob

ob

Figure 1: Transformation expob

The definition of redob is somewhat different from expob because we have to “generate” some extra infor-
mation rather than throwing information away. Therefore, redob has an upper index x, whose domain is the
set of labels. This index will be the labeling of the root in the transformed tree. By the convention above we
have redob (t) := redob

1
(t).

. . .
t

1
t

2
t

n

m 1

. . .

t
n

t
1

m 2

mn
t

2

x

x

m1red
m

red 2 m
red n

red x

red x

obobob

ob

ob

Figure 2: Transformation redob
x

Theorem 3.3 The transformation expob is a bijection between the d-labeled ordered trees with n+1 nodes
and a root labeled 1, and and the d-labeled binary trees with n nodes.

Proof:

Obviously, expob reduces the number of nodes in a tree by one. An easy induction on the number of nodes
shows that expob is injective.

Bijectivity follows from the fact that expob is a mapping between two sets of the same cardinality.

2

An analogous result can be derived for redob in a similar manner.

5

4 Multi-dimensional Simply Generated Trees

4.1 Multi-dimensional Simply Generated Trees

In this section we describe multi-dimensional simply generated families of trees which are an extension of
simply generated trees. Such trees were first investigated by Kemp in [Kem89, Kem93b, Kem95] who ex-
amined many different parameters and different probability models.

Definition 4.1 (Tree Family: Fd) Given an arbitrary simply generated family of trees F with Θ(t) = 1+

∑n�1 cntn the corresponding family of d-dimensional simply generated trees is recursively defined by the fol-
lowing symbolic equations, where F1 = F:

=

=

. . .

. . .+

+d−1F

F
d

F
d

F
d

F
d

F
d

F
d

F
d

d−1Fd−1Fd−1F

F1F1F1F1

F1
F1 F1

1
+ c

1
+ c + c

2

+ c
2

+ c
3

+ c
3

This can be interpreted as follows: A d-dimensional simply generated tree consists of a root to which a (d�
1)-dimensional simply generated trees is attached. If cn 6= 0, an additional n d-dimensional simply generated
trees may be attached to this root as subtree.

In a d-dimensional tree, the nodes and edges that do not belong to the (d�1)-dimensional subtrees are said
to be in layer 1. Similarly, the nodes and edges in the (d�1)-dimensional trees that do not belong to (d�2)-
dimensional trees are said t be in layer 2, etc..

The tree restricted to layer 1 nodes is called the header tree.

To make the description of node numbers in the different layers more convenient, we introduce the following
abbreviations:

Definition 4.2 Let t = (V;E)2 Fd. We define:

si(t) := jfv 2V j v belongs to layer i gj ,and

~s(t) := (s1(t); : : :;sd(t)) with ∑
1�i�d

si(t) = jtj

Generating Functions

The generating function Fd(z) defined for d-dimensional trees:

[zn
]Fd(z) = jft 2 Fd j sd(t) = ngj

6

satisfies the following implicit equations which can be derived from the above definitions by using the trans-
lation rules from [Fla88].

F1(z) = z Θ(F1(z)) (8)

Fd(z) = Fd�1(z) Θ(Fd(z)) (9)

If F(z) is the generating function of the simply generated family of trees used to define Fd then F(z) must be
a solution of (8) and thus:

F1(z) = F(z) (10)

Fd(z) = F(Fd�1(z)) (11)

Sometimes it is desirable to take account of the numbers ~s(t) of nodes in the different layers of a multi-
dimensional tree t. This can be achieved by defining a multivariate generating function eFd(z1; : : :;zd) with

[zn1
1 � : : : � z

nd
d]

eFd(z1; : : :;zd) = jft 2 Fd j (n1; : : : ;nd) =~s(t)gj (12)

We have the functional equations:

eF1(z1) = z1 Θ(

eF1(z1)) (13)
eFd(z1; : : :;zd) = z1

eFd�1(z2; : : :;zd) Θ(

eFd(z1; : : : ;zd)) (14)

In a manner similar to the univariate case, we conclude:

eF1(z1) = F(z1) (15)
eFd(z1; : : :;zd) = F(z1

eFd�1(z2; : : : ;zd)) (16)

The relationship of the univariate and multivariate generating functions is given by:

eFd(1; : : :;1;z) = Fd(z) (17)

Equations (11) and (16) can also be obtained by applying the translation rule “substitution” from [Fla88],
since a tree in Fd can be regarded as tree in F whose nodes have be substituted by a single node plus a tree in
Fd�1.

7

4.2 Special Case: Multi-dimensional Ordered Trees

Multi-dimensional ordered trees are a special case of multi-dimensional simply generated trees, in which the
Θ-function is given by: Θo(t) = ∑n�0 tn

= (1� t)�1.

Definition 4.3 (Tree Family Od) The family of d-dimensional ordered trees is recursively defined by the
following symbolic equations:

= + +d−1

d

= ++

1
1

O

1
O

d
O

d−1
O O

d−1
O

dO
d

O O
+ . . .

O
1

O
+ . . .

1
O

1
O

+

1
O

d

d−1
O

d
O O

+

d
O

This can be interpreted as follows: A d-dimensional ordered tree consists of a root to which at least one
(d� 1)-dimensional ordered trees is attached (as a tree in the next layer). In addition, arbitrarily many d-
dimensional ordered trees can be attached to this root (as subtrees).

Example 4.4 (3-dimensional ordered tree with~s(t) = (5;8;15))

Layer 1 Layer 2 Layer 3

Generating Functions

Substituting Θo(t) into the equations for the general case we obtain for the univariate and multivariate gen-
erating functions Od(z) and eOd(~z):

O1(z) = O(z) (18)

Od(z) = O(Od�1(z)) (19)

and
eO1(z1) = O(z1) (20)

eOd(z1; : : :;zd) = O(z1
eOd�1(z2; : : : ;zd)) (21)

8

4.3 Special Case: Multi-dimensional Binary Trees

Multi-dimensional binary trees are a special case of multi-dimensional simply generated trees, in which the
Θ-function is given by: Θb(t) = 1+2t + t2.

Definition 4.5 (Tree Family Bd) The family of d-dimensional binary trees is recursively defined by the fol-
lowing symbolic equations:

= ++ +
B

BB B
Bd

d

d−1

Bd

d−1

BdBd

d−1Bd−1

= ++ +
B

B
B BB

1
1 1 1 1

This can be interpreted as follows: A d-dimensional binary tree consists of a root to which at least one (d�1)-
dimensional binary tree is attached (as a tree in the next layer). In addition, up to two d-dimensional binary
trees can be attached to this root (as subtrees). If there is only one subtree we distinguish between a right and
a left subtree.

Example 4.6 (4-dimensional binary tree with~s(t) = (4;7;10;13))

Layer 4Layer 1 Layer 2 Layer 3

Generating Functions

Substituting Θb(t) in the equations for the general case we obtain for the univariate and multivariate gen-
erating functions Bd(z) and eBd(~z):

B1(z) = B(z) (22)

Bd(z) = B(Bd�1(z)) (23)

and
eB1(z1) = B(z1) (24)

eBd(z1; : : :;zd) = B(z1
eBd�1(z2; : : : ;zd)) (25)

9

5 Monotonically Labeled Simply Generated Trees

5.1 Monotonically Labeled Simply Generated Trees

In this section we describe monotonically d-labeled simply generated families of trees. Monotone labelings
of tree families were investigated first in [PU83].

Definition 5.1 (Labeled Tree) A tree t = (V;E) together with a set of labels M and a (total) labeling function
f : V !M is called a (totally) labeled tree.

If M = f1; : : :;dg we call t d-labeled.

If f is partial, the tree is said to be partially labeled.

In order to describe the number of occurrences of certain labels more easily we define the following abbre-
viations for d-labeled trees.

~m(t) := (m1(t); : : :;md(t)) ,with

mi(t) := j f�1
(i)j

If f is partial, we define: m0(t) := jV� f�1
(M)j. Note, that jtj= ∑0�i�d mi(t) always holds.

Definition 5.2 (Monotonically d-labeled Tree) A d-labeled tree t with a labeling function f is called mono-
tonically (increasing) d-labeled, if f (v j)� f (vi) whenever ‘v j is a son of vi’.

Definition 5.3 (Tree Family MFd) The family of monotonically d-labeled simply generated trees is recur-
sively defined by the following symbolic equations where MO0 = /0 and Θ(t) = 1+∑n�1 cntn stems from a
simply generated tree family F:

= . . .+
1

+ c + c
2

+ c
3

d
MF

d−1MF
+

+

1111

d
MF

d
MF

d
MF

d
MF

d
MF

d
MF

This can be interpreted as follows, corresponding to the first term and the remaining terms.

If a monotonically d-labeled tree has a root labeled differently from 1, then it corresponds to a (d�1)-labeled
simply generated tree whose labels have each been increased by 1 (symbolized by MF+

d�1). If it has a root
labeled 1, n monotonically d-labeled simply generated trees can be attached (as subtrees) if cn 6= 0.

On consequence of the distinction is important enough to put into a formula:

jMFdj� jMFd�1j= jft 2 MFd j the root of t is labeled 1gj (26)

Subsequently, we will use the letter “E” to prefix subfamilies of trees where the root is labeled 1.

10

Generating Functions

The generating function MFd(z) with:

[zn
]MFd(z) = jft 2MFd j jtj= ngj

satisfies the following implicit equations which can be derived by using the translation rules from [Fla88].

MF0(z) = 0 (27)

MFd(z) = MFd�1(z)+ zΘ(MFd(z)) (28)

Sometimes one wants to count the numbers ~m(t) of occurrences of the different labels in a tree t. This can
be achieved by defining the multivariate generating functiongMFd(z1; : : :;zd) with

[z1
n1
� : : : � zd

nd
]

gMFd(z1; : : : ;zd) = jft 2MFd j ~m(t) = (n1; : : : ;nd)gj (29)

We have the functional equations:

gMF0() = 0 (30)
gMFd(z1; : : :;zd) =

gMFd�1(z2; : : : ;zd)+ z1 Θ(

gMFd(z1; : : :;zd)) (31)

The relationship of the univariate and multivariate generating functions is given by:

gMFd(z; : : :;z) = MFd(z)

For the subfamily of trees with roots labeled 1 we have by the remark after Definition 5.3:

EMFd(z) = Θ(MFd(z)) (32)

and gEMFd(z1; : : : ;zd) = z1 Θ(

gMFd(z1; : : : ;zd)) (33)

Moreover, since unlabeled trees are isomorphic to trees labeled with just one label:

F(z) = MF1(z) = EMF1(z) (34)

Little is known about the coefficients of these generating functions in general. In [PU83] several special fami-
lies of trees were investigated including unordered trees (which are not simply generated). The investigations
were limited to counting the number of trees.

For the special case of monotonically d-labeled ordered trees which is described below a new result was
published in [Kem93a]. We rediscover this result later and also derive a similar one for the special case of
monotonically d-labeled binary trees.

11

5.2 Special Case: Monotonically Labeled Ordered Trees

Monotonically labeled ordered trees are a special case of monotonically labeled simply generated trees in
which the Θ-function is given by: Θo(t) = ∑n�0 tn

= (1� t)�1.

Definition 5.4 (Tree family MOd) The family of monotonically d-labeled ordered trees is recursively de-
fined by the following symbolic equation (MO0 = /0):

= . . .+ + + +

1 11
1

MO
+

MO
MO MO MO MOMOMO

d−1d
d d d d d d

+

This can be interpreted as follows: If a monotonically d-labeled ordered tree has a root labeled differently
from 1, then it corresponds to a (d� 1)-labeled ordered tree whose labels have each been increased by 1.
(Symbolized by MO+

d�1.) If it has a root labeled 1, arbitrarily many monotonically d-labeled ordered trees
can be attached (as subtrees).

Example 5.5 (Monotonically 4-labeled ordered tree with ~m(t) = (4;3;5;4))

1 2

1

3

3

4

1

1

2

3 4

3

2

34

4

Generating Functions

Substituting Θo(t) in the equations for the general case we obtain for the univariate and multivariate gen-
erating functions MOd(z), EMOd(z) and gMOd(~z), gEMOd(~z):

MO0(z) = EMO0(z) = 0 (35)

MOd(z) = MOd�1(z)+ z (1�MOd(z))
�1 (36)

EMOd(z) = z (1�MOd(z))
�1 (37)

and
gMO0() =

gEMO0() = 0 (38)
gMOd(z1; : : :;zd) =

gMOd�1(z2; : : :;zd)+ z1 (1�gMOd(z1; : : : ;zd))
�1 (39)

gEMOd(z1; : : :;zd) = z1 (1�gMOd(~z))
�1 (40)

12

5.3 Special Case: Monotonically Labeled Binary Trees

Monotonically labeled binary trees are a special case of monotonically labeled simply generated trees in
which the Θ-function is given by : Θb(t) = 1+2t + t2.

Definition 5.6 (Tree Family MBd) The family of monotonicallyd-labeled binary trees is recursively defined
by the following symbolic equations (MB0 = /0):

=

1
+ +

dMB d−1MB +

1

d
MB

+

1

dMB
+

1

dMB
d

MB

This can be interpreted as follows: If a monotonically d-labeled binary tree has a root labeled differently from
1, then it corresponds to a (d�1)-labeled binary tree whose labels have each been increased by 1. (Symbol-
ized by MB+

d�1.) If it has a root labeled 1, up to 2 monotonically d-labeled binary trees can be attached (as
subtrees). If there is only one subtree we distinguish between a right and a left subtree.

Example 5.7 (Monotonically 3-labeled binary tree with ~m(t) = (4;6;7))

23

1 1

1

1

22

2223

3

3

3 3

3

Generating Functions

Substituting Θb(t) into the equations for the general case we obtain for the univariate and multivariate gen-
erating function MBd(z),EMBd(z), andgMBd(~z), gEMBd(~z):

MB0(z) = EMB0(z) = 0 (41)

MBd(z) = MBd�1(z)+ z(1+MBd(z))
2 (42)

EMBd(z) = z(1+MBd(z))
2 (43)

and
gMB0() =

gEMB0() = 0 (44)
gMBd(z1; : : : ;zd) =

gMBd�1(z2; : : : ;zd)+ z1(1+gMBd(z1; : : : ;zd))
2 (45)

gEMBd(z1; : : : ;zd) = z1(1+gMBd(z1; : : :;zd))
2 (46)

13

6 A One-to-one Correspondence: EMO2
d$ Bd

6.1 Identity 1

Theorem 6.1

z�1EMOd(z)
2

= B(z�1 EMOd�1(z)
2
)

Proof: Let Yd := z�1EMOd(z)2, then Yd�1 = (2 + Yd + Y�1
d)

�1 by (36) and (37). The identity follows
immediately after substituting Yd�1 into (5). 2

Corollary 6.2 (Identity 1,[Kem93a])

z�1EMOd(z)
2

= Bd(z)

Proof: The proof is an easy induction on d using z�1EMO1(z)2
= z�1

(O(z))2
= B(z) = B1(z) for the basis

and (23) and Theorem 6.1 for the induction step. 2

Passing to the coefficients of the generating functions we obtain the following enumeration result.

Corollary 6.3 There are as many tuples of d-labeled ordered trees with the root labeled 1 and a total of
n+ 1 nodes as there are d-dimensional binary trees with n nodes in the last (d-th) layer. More formally:
jf(t1; t2) 2 EMOd�EMOd j jt1j+ jt2j= n+1gj = jft 2 Bd j sd(t) = ngj.

The rest of this section is structured as follows: First we shall construct auxiliary tree families whose gen-
erating functions satisfy the left and right hand side of Theorem 6.1 (EXd and B[EXd]). Then we will give a
structural correspondence between members of EXd and B[EXd] in form of the transformations expex�bex

and redex�bex .

By iterating these transformations and employing two others (expemo�ex and redemo�ex) we finally obtain
a transformation associated with Corollary 6.2.

6.2 Auxiliary Tree Families

Definition 6.4 (Tree Families Xd and EXd) The tree family Xd and its subfamily EXd are defined as follows:
Xd = f expob (t) j t 2 EMOdg and EXd = ft 2 Xd j t has a root labeled 1g.

This definition is not very handy. Theorem 6.7 will provide a better characterization of the tree family.

Definition 6.5 (Rightmost Branch, RA) Let t = (V;E) be a binary tree and v 2V. RAv �V is the smallest
set containing v such that w2 RAv! RSON(w)2RAv holds, i.e. RAv are all the nodes on a rightmost branch
starting with node v.

Definition 6.6 (Property M) Let t = (V;E) be a labeled binary tree with labeling function f . A node v 2V
is said to satisfy Property M, if it either has no left son or for all w 2 RALSON(v) f (w) � f (v) is true. This
definition is clarified in Figure 3.

14

v

RA

LSON(v)

LSON(v)

Figure 3: Definition 6.6

Theorem 6.7 (Alternative Characterization of Xd) Xd consists of all those d-labeled binary tree whose
nodes satisfy property M.

Proof: Let g be an injective labeling function of an ordered tree t = (V;E). We are now able to distinguish
the individual nodes of the tree. Let t 0 = (V 0

;E0) = expob (t). We say two nodes from t and t 0 correspond if
they have the same label. From the definition of expob it should be clear that if v0 2V 0 corresponds to v2V ,
then each of the nodes in RALSON(v0

)

must correspond to exactly one nodes in the set S, which is contains all
sons of v.

Now all the nodes in trees from Xd satisfy property M because the original trees were monotonically labeled.

Conversely, if all nodes in a labeled binary tree t satisfy property M, redob (t) generates a tree t 0 2 EMOd

with expob (t 0) = t implying t 2 Xd. 2

Corollary 6.8 (Subtrees) If t is in Xd then any subtree of t is also in Xd.

Proof: Because all the nodes of t satisfy property M, this is also true for the nodes in any subtree. 2

Corollary 6.9 (Concatenation of Trees) If tl; tr 2 Xd then the tree t constructed by attaching tl; tr as the left
and right subtree to a new root node with label 1 is also in Xd (even in EXd):

Proof: Because tl; tr 2 Xd all nodes of t except for the root satisfy property M. But since 1 is smallest label
the root satisfies property M, too. 2

Corollary 6.10 (Left Subtree) Let t 2Xd with root r(t)and let tl = (Vl;El) be the left subtree of t then f (v)�
f (r) for all v 2 Vl.

Proof: By induction on jVlj. For jVlj = 0 the claim is trivially true. For jVlj > 0 the subtree tl must be of
the form depicted in Figure 4. Because of Theorem 6.7 we have: 81�i�n f (vi) � f (r). Additionally, the
induction hypothesis applies to all vi and their left subtrees. 2

15

r

v1

t 1

. . .
v

v
. . .

2

nt 2

t nt l

Figure 4: Corollary 6.10

Generating Function

For the generating functions Xd(z) and eXd(~z) defined by:

[zn
]Xd(z) = jft 2 Xd j jtj= ngj

[zn1
1 � : : : � z

nd
d]

eXd(z1; : : : ;zd) = jft 2 Xd j ~m(t) = (n1; : : :;nd)gj

We have by definition and the fact that expob is a bijection.

Xd(z) = EMOd(z)=z (47)
eXd(z1; : : : ;zd) =

gEMOd(z1; : : :;zd)=z1 (48)
eXd(z; : : :;z) = Xd(z) (49)

For the generating functions EXd(z) and fEXd(~z) defined by:

[zn
]EXd(z) = jft 2 EXd j jtj= ngj

[zn1
1 � : : : � z

nd
d]

fEXd(z1; : : : ;zd) = jft 2 EXd j ~m(t) = (n1; : : : ;nd)gj

We have:

EXd(z) = zXd(z)
2
= EMOd(z)

2
=z (50)

fEXd(z1; : : :;zd) =

gEMOd(z1; : : :;zd)
2
=z1 (51)

fEXd(z; : : :;z) = EXd(z) (52)

This follows from Corollaries 6.9 and 6.8, which establish a bijection between tuples of trees from Xd and
trees from EXd. Using Corollary 6.2 we get:

EXd(z) = Bd(z) (53)

Passing to the coefficients of the generating functions we obtain the following enumeration result.

Theorem 6.11 There are as many trees in EXd with n nodes as there are trees in Bd with n nodes in the last
layer. More formally: jft 2 EXd j jtj= ngj = jft 2 Bd j sd(t) = ngj.

16

Definition 6.12 (Tree Family B[EXd]) The tree family B[EXd] is recursively defined by the following sym-
bolic equation:

= ++ +d

d d d d

EXd
EXd EXd EXd

B[EX]

B[EX] B[EX] B[EX] B[EX]

This can be interpreted as follows: A tree t 2B[EXd] is a binary tree where trees from EXd have been attached
to every node.

Because every node of t is associated with a tree from EXd, we can think of the nodes as being substituted
by the trees.

t is a partially labeled tree.

Generating Functions

For the generating functions B[EXd](z) and gB[EXd](y;~z) defined by:

[zn
] B[EXd](z) = jft 2 B[EXd]j ∑

1�i�d

mi(t) = ngj

[yn0zn1
1 � : : : � z

nd
d]

gB[EXd](y;z1; : : : ;zd) = jft 2 B[EXd] j m0(t) = n0^~m(t) = (n1; : : :;nd)gj

we have (using the translation rule “substitution” from [Fla88]):

B[EXd](z) = B(EXd(z)) (54)

B[EXd](y;~z) = B(yfEXd(~z)) (55)

B[EXd](1;z; : : :;z) = B[EXd](z) (56)

Theorem 6.1 implies:

B[EXd](z) = EXd+1(z) (57)

Passing to the coefficients of the generating functions we obtain the following enumeration result.

Theorem 6.13 There are as many trees in B[EXd] with a total of n labeled nodes as there are trees in EXd+1

with n nodes. More formally: jft 2 B[EXd+1] j ∑1�i�d mi(t) = ngj = jft 2 EXd j jtj= ngj.

17

6.3 Auxiliary Transformations

Definition 6.14 (Transformations redemo�ex and expemo�ex)

The transformations redemo�ex : EXd 7! EMO2
d and expemo�ex : EMO2

d 7! EXd are defined below:

1 1 1

nat

exp

red

t
exp

red

t1

nat

t2 t l t ltr tr

emo−ex

emo−ex

The transformation expemo�ex consists of 2 steps. Step 1 transforms t1; t2 2 EMOd into tl; tr 2 Xd by applying
transformation expob to each tree. The next step merges these 2 trees into a single tree t 2 EXd, by adding a
root node that is labeled 1. redemo�ex is the inverse transformation. expemo�ex is bijective because expob

is bijective.

The transformations we have just presented correspond to the enumeration results of (50).

Example 6.15 (Application example of the transformations redemo�ex and expemo�ex)

1

1

2

1

3

2

3 4

1

1

2

3 4

3

2

34

4

1

1

2 1

3

23

4

1

2

3

4

2

3

3

4

4
exp emo−ex

emo−exred

18

Definition 6.16 (Transformation expex�bex)

The transformation expex�bex : EXd 7! B[EXd�1] is defined below:

1

1 1
t l1

t l2 t r2

t r1

exp ex−bex

1

t l2
t r2

t r1t l1− −
1 1expex−bex expex−bex

expex−bex

The roots of the trees tl2 and tr2 are chosen as follows: they have to be in RALSON(r) and RARSON(r) respec-
tively; they must be labeled with 1 and they must be as close as possible to the root of the whole tree.

If there is no node labeled 1 in RAr(tl) (RAr(tr)) then tl2 (tr2) is the empty tree.

The trees tl1� and tr1� are obtained from tl1 and tr1 by decreasing all labels by 1.

We postpone the proof of the transformations being well-defined and bijective until the next subsection.

Example 6.17 (Application example of transformation expex�bex)

1

1

2 1

3

23

4

1

2

3

4

2

3

3

4

4

exp ex−bex 1

1

2

3

4

1

2 1

3

23

4

2

3

3

4

4

expex−bex expex−bex

19

Definition 6.18 (Transformation redex�bex)

The transformation redex�bex : B[EXd�1] 7! EXd is defined below:

1

t l2
t r2

t r1t l1

red
ex−bex

red
ex−bex

1

t l1

t l2 t r2

t r1+ +

red
ex−bex

red
ex−bex

t l t r

The trees tl1+ and tr1+ are obtained from tl1 and tr1 by increasing all labels by 1.

The trees redex�bex (tl1) and redex�bex (tr1) are attached to the rightmost nodes in tl1+ and tr1+ as right
subtrees.

Example 6.19 (Application example of transformation redex�bex)

1

1

3

23

2

1

1

2

3

1

1

1

12

2

3

red ex−bex

1

1

1

12

2

3

1

1

2

3

1

3

23

2

1

red ex−bex red ex−bex

20

Theorem 6.20 The transformation expex�bex is a bijection between the tree families EXd and B[EXd�1].

Proof:
expex�bex is well-defined:
We have to show that the tree on the left of Definition 6.16 has a unique representation as an argument of
expex�bex . We also have to show that tl2 and tr2 are in the domain of expex�bex (i.e. EXd �EXd) and that
the resulting tree is in the range of expex�bex (i.e. B[EXd�1]).
Without loss of generality we only consider the left subtree which consists of tl1 and tl2. As depicted in
Figure 5, let vi be the root of tl2. Hence, all v j with j < i have labels greater than 1.
Because of Corollary 6.10 there are no nodes with label 1 in the left subtree of any such v j .
Thus, tl1� is well-defined and similarly tr1�. If no such node vi exists, no node in the entire tree tl is labeled
with 1.
The trees tl2; tr2 are subtrees of a tree in Xd. Because of Corollary 6.8 they are themselves in Xd, and since
their roots are labeled with 1 they are also in EXd.
Now the tree consisting of tl1�; tr1� is in EXd�1 by Corollary 6.9.

v1

t 1

v2

t 2

t l

t l1

t

t

vi

i

1

. . .

l2

. . .

Figure 5: Left subtree of a tree in EXd

Remark on the node numbers:
Let t be tree in EXd and ~m(t) = (m1; : : :;md). Obviously, ~m(expex�bex (t)) = (m1 +m2;m3; : : : ;md). That
is, the trees from EXd�1 generated by the transformation of t consist of as many nodes as the original tree.
Moreover, the (unlabeled) binary header tree to which the EXd�1 trees are attached consists of m1 nodes.
expex�bex is injective:
Let t1

6= t2 be two trees in EXd. We will show that expex�bex (t1
) 6= expex�bex (t2

).
Because of the remark on the node numbers we can assume: jt1

j= jt2
j.

The proof is an induction on the number of nodes n = jt1
j= jt2

j.
Basis n = 1: Since there is just one tree with one node which in addition must be labeled with 1, nothing
remains to be shown.
Now, suppose that the induction hypothesis is valid for trees with less than n nodes and let t1

6= t2 be two
trees with n nodes. These trees must consist of subtrees as depicted in Definition 6.16.
We distinguish four different cases according to the subtree(s) in which t1 and t2 differ:

21

1. t1
l2 6= t2

l2:

Using the induction hypothesis it follows that expex�bex (t1
l2) 6= expex�bex (t2

l2) and hence
expex�bex (t1

) 6= expex�bex (t2
)

2. t1
r2 6= t2

r2:

Similar to 1.

3. t1
l1 6= t2

l1:

We have t1
l1� 6= t2

l1� and therefore expex�bex (t1
) 6= expex�bex (t2

)

4. t1
r1 6= t2

r1:

Similar to 3.

expex�bex is bijective:

This follows immediately from the fact that expex�bex is a mapping between two sets of the same cardinality
(Theorem 6.13).

2

By the above remark on the nodes numbers we get the following refinement of Theorem 6.13:

Corollary 6.21 (Refined Theorem 6.13)

jft 2 EXd j ~m(t) = (n1; : : : ;nd)gj =

jft 2 B[EXd�1] j ~m(t) = (n1+n2;n3; : : : ;nd)^m0(t) = n1gj

This can be written more compactly as an equation of generating functions:

fEXd(z1; : : : ;zd) =
gB[EXd�1](z1=z2;z2;z3; : : :;zd)

An analogous result can be derived for redex�bex in a similar manner.

22

6.4 A One-to-one Correspondence: Bd $ EMOd�EMOd

Let t1 be a tree in EXd with ~m(t1
) = (m1; : : :;md). Applying the transformation expex�bex to t1 a new tree

t2
2 B[EXd�1] with ~m(t2

) = (m1+m2;m3; : : : ;md) is generated.

t2 includes m1 trees from EXd�1.

Using the transformation again these m1 trees can themselves be replaced by trees from B[EXd�2] yielding a
tree t3 with ~m(t3

) = (m1 +m2 +m3;m4; : : :;md).

Iterating this d� 1 times we get ∑1�i�d�1 mi trees from EX1 that consist of total of ∑1�i�d mi nodes all of
which are labeled 1. If we remove the labels we obtain trees from B1. Altogether, we have generated a tree
in Bd.

The iterated transformation we have just presented corresponds to the enumeration result of Theorem 6.11.
From the effects of the transformations on node numbers we are now able to refine this theorem.

Theorem 6.22 (Refined Theorem 6.11)

jft 2 Bd j~s(t) = (n1; : : : ;nd)gj = jft 2 EXd j ~m(t) = (n1;n2�n1; : : :;nd�nd�1)gj

This can be written more compactly as an equation of generating functions:

fEXd(z1; : : :;zd) = eBd(z1=z2; : : : ;zd�1=zd;zd)

An example of the iterated application of the transformation is given in Example 6.24.

Combine the iterated transformation with the transformations expemo�ex and redemo�ex yields the desired
one-to-one correspondence for Identity 1, namely expemo�b : EMOd�EMOd ! Bd and redemo�b : Bd !

EMOd�EMOd which can be described as:

expemo�b = unmark1 � expex�bex
d�1

� expemo�ex (58)

redemo�b = redemo�ex � redex�bex
d�1

� mark1 (59)

unmark1 stands for the removal of labels from the EX1 trees and mark1 for labeling all nodes of B1 with 1.
For d = 1 this essentially simplifies to the classical correspondence.

Proceeding similarly as above we get a refinement of Corollary 6.2:

Theorem 6.23 (Refined Identity 1)

jft 2 Bd j~s(t) = (n1; : : :;n2)gj =

jf(t1; t2) 2 EMOd�EMOd j ~m(t1)+~m(t2) = (n1 +1;n2�n1; : : : ;nd�nd�1)gj

This can be written more compactly as an equation of generating functions:

eBd(z1=z2; : : : ;zd�1=zd;zd) = z�1
1
gEMOd(z1; : : :;zd)

2

Example 6.15 combined with Example 6.24 give an example for expemo�b and redemo�b . (Note, that the
labels in the last layer have not been removed in order to keep the figure at a reasonable size.)

23

E
xam

ple
6.24

(E
xam

ple
ofthe

iterated
application

of
exp

ex
�

bex
and

red
ex
�

bex
)

1

2 1

3

23

4

1

2

3

4

2

3

3

4

4

1

1

2

1

1

3

23

2

1

1

2

3

1

1

1

12

2

3

1

1

1

2

2

1

1

1

1

2

1

1

1

1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

expex−bex

ex−bexred

expex−bex

ex−bexred

expex−bex

ex−bexred

1EX

4EX

2EX3EX

24

7 A One-to-one Correspondence: Od $MBd

7.1 Identity 2

Theorem 7.1

z(1+MBd(z)) = O(z(1+MBd�1(z)))

Proof: Let Zd := z(1+ MBd(z)) , then Zd�1 = Zd + Z2
d by (42). The identity follows immediately after

substituting Zd�1 into (6). 2

This identity regarding monotonically labeled binary trees is a new result.

Corollary 7.2 (Identity 2)

z(1+MBd(z)) = Od(z)

Proof: The proof is an induction on d using z(1+MB1(z)) = z(1+B(z)) = O(z) = O1(z) for the basis and
(19) and Theorem 7.1 for the induction step. 2

Passing to the coefficients of the generating functions we obtain the following enumeration result:

Corollary 7.3 There are as many monotonically d-labeled binary trees with n nodes as there are d-
dimensional ordered trees with n+ 1 nodes in the last (d-th) layer. More formally: jft 2MBd j jtj= ngj =
jft 2 Od j sd(t) = n+1gj.

The rest of this section is structured as follows: First we shall construct auxiliary tree families whose gener-
ating functions satisfy the left and right hand side of Theorem 7.1 (MB2d and O[MB2d]). Then we will give a
structural correspondence between members of MB2d and O[MB2d] in form of the transformations expomb�mb

and redomb�mb .
By iterating these transformations we finally obtain a transformation associated with Corollary 7.2.

7.2 Auxiliary Tree Families

Definition 7.4 (Tree Family MB2d) The tree family MB2d is obtained from MBd by adding the empty tree 2,
i.e. MB2d = MBd [f2g.

Generating Functions

This implies for the generating functions:

MB2d (z) = MBd(z)+1 (60)

gMB
2

d (~z) =

gMBd(~z)+1 (61)

With Corollary 7.2 we have:

zMB2d (z) = Od(z) (62)

Passing to the coefficients of the generating functions we obtain the following enumeration result.

Theorem 7.5 There are as many tree in MB2d with n nodes, as there are trees in Od with n+1 nodes in the
last layer. More formally: jft 2MB2d j jtj= ngj = jft 2 Od j sd(t) = n+1gj.

Note, that this enumeration result is also valid for MBd instead of MB2d — except for the pathological case
n = 0.

25

Definition 7.6 (Tree Family O[MB2d]) The tree family O[MB2d] is defined as follows:

= + + + . . .+
MB

d
MB

d
MB

d
MB

d

d
O[MB]

d
O[MB]

d
O[MB]

d
O[MB]

d
O[MB]

d
O[MB]

d
O[MB]

This can be interpreted as follows: A tree t 2 O[MB2d] is an ordered tree. But an additional tree from MB2d
is attached to every node of t.

Because every node of t is associated with a tree from MB2d , we can think of the nodes as being substituted
by the trees.

t is a partially labeled tree.

Generating Functions

For the generating functions O[MB2d](z) and gO[MB2d](y;~z) defined by:

[zn
]O[MB2d](z) = jft 2 B[EXd] j jtj= ngj

[yn0zn1
1 � : : : � znd

d]

gO[MB2d](y;z1; : : : ;zd) =

jft 2 O[MB2d] j m0(t) = n0^~m(t) = (n1; : : :;nd)gj

we get (using the construct “substitution” from [Fla88]):

O[MB2d](z) = O(zMB2d (z)) = O(z(1+MBd(z))) (63)
gO[MB2d](y;~z) = O(ygMB

2

d (~z)) = O(y(1+MBd(~z))) (64)

gO[MB2d](z;z; : : :;z) = O[MB2d](z) (65)

Theorem 7.1 implies:

O[MB2d](z) = zMB2d+1(z) (66)

Passing to the coefficients of the generating functions we obtain the following enumeration result.

Theorem 7.7 There are as many trees in O[MB2d] with a total of n+ 1 nodes, as there are trees in MB2d+1
with n nodes. More formally: jft 2 O[MB2d+1] j jtj= n+1gj = jft 2MB2d j jtj= ngj.

26

7.3 Auxiliary Transformations

Definition 7.8 (Transformation expomb�mb)

The transformation expomb�om : O[MB2d�1] 7!MB2d is defined as follows:

. . .
t

2
t

n
t

1

t x

t x

expmb−omb

expmb−omb

1

. . .

t
n

t
1

t
2

1

1

expmb−omb

expmb−omb

expmb−omb

x
+t

x
+t

The tree t+ are obtained from t by increasing all labels by 1.

Note that this transformation is very similar to expob .

Example 7.9 (Application Example of Transformation expomb�mb)

23

1 1

1

1

22

2223

3

3

3 3

3

1

2

1

11

1

1

2

2

2

2

2

2

omb−mb
exp

27

Definition 7.10 (Transformation expomb�om)

The transformation redomb�mb : MB2d 7! O[MB2d�1] is defined as follows:

. . .

t
n

t
1

t
2

. . .

t
1

t
2

t
n

m

1

1

1

t−
x

t−
x

t
x

=t
x

red mb−omb

red mb−omb
red mb−omb red mb−omb

m

t
x

t
x

red mb−omb =

m>1 or

m>1 or

The tree t� are obtained from t by decreasing all labels by 1.

Note that this transformation is very similar to redob .

“m” is the node on the rightmost branch that is labeled 1 and as close to the root as possible.

Example 7.11 (Application Example of Transformation redomb�mb)

23

1 1

1

1

22

2223

3

3

3 3

3

1

2

1

11

1

1

2

2

2

2

2

2

omb−mb
red

28

Theorem 7.12 The transformation expomb�mb is a bijection between the tree families O[MB2d�1] and MB2d .

Proof:

Remark on the node numbers:

Let t be in O[MB2d] with ~m(t) = (m1; : : : ;md�1) and m0(t) = m0). Obviously ~m(expomb�mb (t)) = (m0�

1;m1; : : :;md�1) holds.

expomb�mb is injective:

Let t1
6= t2 be two trees in O[MB2d]. We will show that expomb�mb (t1

) 6= expomb�mb (t2
). Because of the

remark on the node numbers we can assume m0(t1
) = m0(t2

).

The proof is an induction on the number of unmarked nodes n = m0(t1
) = m0(t2

), which is equivalent to the
number of nodes in the ordered header tree.

Basis n = 1: Because there is only one tree with a single node, the trees from MB2d�1 which are attached to
them must be different, but then the transformed trees are clearly distinct.

Now, suppose the induction hypothesis be valid for node numbers less than n and let t1 and t2 be 2 trees with
n nodes in the header tree. These trees must consist of subtrees as depicted in Definiton 7.8 We distinguish
two different cases according to the subtree(s) in which t1 and t2 differ:

1. t1
i 6= t2

i

Using the induction hypothesis it follows that: expomb�bm (t1
i) 6= expomb�mb (t2

i) and thereby
expomb�mb (t1

) 6= expomb�mb (t2
)

2. t1
x 6= t2

x :

We have t1
x+ 6= t2

x+ and thereby expomb�mb (t1
) 6= expomb�mb (t2

)

expomb�mb is bijective:

This follows immediately from the fact that expomb�mb is a mapping between two sets of the same cardi-
nality. (Theorem 7.7).

2

By the above remark on the nodes numbers we get the following refinement of Theorem 7.7:

Corollary 7.13 (Refined Theorem 7.7)

jft 2MB2d j ~m(t) = (n1; : : :;nd)gj= (67)

jft 2 O[MB2d�1] j ~m(t) = (n2; : : : ;nd)^m0(t) = n1 +1gj (68)

This can be written more compactly as an equation of generating functions:

z1
gMB

2

d (z1; : : :;zd) =
gO[MB2d�1](z1;z2; : : :;zd) (69)

An analogous result can be derived for redomb�mbx in a similar manner.

29

7.4 A One-to-to Correspondence: Od $MB2d

Let t1 be a tree in MB2d with ~m(t1
) = (m1; : : : ;md).

The transformation redomb�mb generates a tree t2
2O[MB2d�1] with~m(t2

) = (m2;m3; : : : ;md) which includes
1+m1 trees from MB2d�1.

These 1+m1 trees can themselves be transformed into trees from MB2d�2 yielding a tree t3 with ~m(t3
) =

(m3;m4; : : : ;md) which includes 1+m1 +m2 trees from MB2d�2.

Iterating this d times, we get 1∑1�i�d mi empty trees.

Removing these empty trees we finally obtain a tree in Od.

Hence, we have found the desired one-to-one correspondence for Identity 2, namely expo�mb : Od !MB2d
and redo�mb : MB2d ! Od which can be described as:

expo�mb = expomb�mb
d
� add2 (70)

redo�mb = rem2 � redomb�mb
d (71)

rem2 stands for the removal of the empty trees from O[MB20] as described above and add2 for the at-
tachment of empty trees to every node of a tree in O. For d = 1 this essentially simplifies to the classical
correspondence.

Looking at the effects of the transformations on node numbers we can state the following refinement of Corol-
lary 7.2:

Theorem 7.14 (Refined Identity 2)

jft 2 Od j~s(t) = (n1; : : : ;nd)gj= jft 2MB2d j ~m(t) = (n1�1;n2�n1; : : : ;nd�nd�1gj (72)

This can be written more compact as an equation of generating functions.

z1
gMB

2

d (z1; : : :;zd) =
eOd(z1=z2; : : : ;zd�1=zd;zd) (73)

An example of the iterated application of the transformation is given in Example 7.15. (Note, that the empty
trees in the last layer have not been removed in order to keep the figure at a reasonable size.)

30

E
xam

ple
7.15

(A
n

application
exam

ple
of

exp
o
�

m
b

and
red

o
�

m
b

)

11

1

1

1
1

2

1

11

1

1

2

2

2

2

2

2

1 1

23

1 1

1

1

22

2223

3

3

3 3

3

MB3

MB MB2 1

red

exp

omb−mb

omb−mb

red

exp

omb−mb

omb−mb

red

exp

omb−mb

omb−mb

8 Application: Analysis of the Label Distribution in EMOd and MBd

According to [Kem95, Theorem 7b] the asymptotic expected number of nodes in layer l of a d-dimensional
simply generated tree with n nodes in the last layer I(d; l;n) (assuming equidistribution of the trees) is given
by:

I(d; l;n) � ξ(d; l) n (n! ∞) (74)

with: ξ(d; l) = ∏
l�i�d�1

Θ(ui)�uiΘ0

(ui)

Θ(ui)
(75)

Where the ui are recursively defined by:

u0 = smallest positive solution of xΘ0

(x) = Θ(x) (76)

ui+1 = ui=Θ(ui) for i > 0 (77)

Note, that not all values for n might actually occur as valid node numbers in the last layer.

For the special case of multi-dimensional ordered trees we have:

ξo(d; l) = ∏
s�i�d�1

(1�2ui)=(1�ui) and u1 = 1=4; ui+1 = ui(1�ui) for i > 0

From Theorem 6.23 and a symmetry argument we can infer that — assuming equidistribution of all trees
from EMOd with size n — the asymptotic expected number of occurrences of label m, denoted Mo(d;m;n),
is given by:

Mo(d;m;n)� Io(d;m;n)� Io(d;m�1;n) (n! ∞)

We have — in a slightly different shape — rediscovered a result from [Kem93a] where a one-to-one corre-
spondence between monotonically ordered trees and multi-dimensional extended binary trees was presented.

For the special case of multi-dimensional binary trees we have:

ξb(d; l) = ∏
l�i�d�1

(1�u2
i)=(1+2ui+u2

i) and u0 = 1; ui+1 = ui=(1+2ui +u2
i) for i > 0

From Theorem 7.14 we can infer that — assuming equidistribution of all trees from MBd with size n — the
expected asymptotic number of occurrences of label m, denoted Mb(d;m;n), is given by:

Mb(d;m;n)� Ib(d;m;n)� Ib(d;m�1;n) (n! ∞)

The following tables state the asymptotic expected label distributions for small values of d:

Label Distribution of MBd in Percent
m

d 1 2 3 4 5 6

1 100.0
2 66.7 33.3
3 51.2 25.6 23.1
4 42.1 21.0 18.9 18.0
5 35.8 17.9 16.1 15.3 14.8
6 31.3 15.6 14.1 13.4 12.9 12.7

Label Distribution of EMOd in Percent
m

d 1 2 3 4 5 6

1 100.0
2 60.0 40.0
3 43.4 29.0 27.6
4 34.2 22.8 21.7 21.3
5 28.3 18.9 18.0 17.6 17.3
6 24.1 16.1 15.3 15.0 14.8 14.6

32

9 Conclusions

We have presented two new correspondences between families of monotonically labeled and multi-
dimensional simply generated trees generalizing the classical correspondence between binary and ordered
trees.

The search for the two correspondences was motivated by enumeration results like Corollary 6.3 which chal-
lange one to establish systematic correspondences between the classes of objects involved.

The first correspondece solves an open problem from [Kem93a] namely to find a combinatorial interpreta-
tion of the functional relation z�1EMOd(z)2

= Bd(z) (Corollary 6.2). Kemp’s paper also describes another
correspondence between monotonically labeled ordered and multi-dimensional extended binary trees.

The question arises naturally, whether there are more such correspondences. Or, why such correspondences
are limited to binary and ordered trees only. No systematic approach to answer this question has been under-
taken so far.

The actual coefficients of the generating functions defined in equations 8/9 and 27/28 may be recovered by
computational inversion. Mathematica routines for computing these coefficients can be obtained by email
from muth@cs.arizona.edu.

References

[Fla88] Philippe Flajolet. Mathematical methods in the analysis of algorithms and data structures. In
Egon Börger, editor, Trends in Theoretical Computer Science, pages 225–304. Computer Science
Press, 1988.

[Kem89] Rainer Kemp. Binary search trees for d-dimensional keys. J. Inform. Process. Cybernet. EIK,
25(10):513–527, 1989.

[Kem93a] Rainer Kemp. Monotonically labelled ordered trees and multidimensional binary trees. In Zoltán
Ésik editor, Fundamentals of Computation Theory, pages 329–341. Springer, 1993. Lecture
Notes in Computer Science Vol. 710.

[Kem93b] Rainer Kemp. Random multidimensional binary trees. J. Inform. Process. Cybernet. EIK,
29(1):9–36, 1993.

[Kem95] Rainer Kemp. On the inner structure of multidimensional simply generated trees. Random Struc-
tures and Algorithms, 6:121–146, 1995.

[Knu73] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming.
Addison-Wesley, second edition, 1973.

[MM78] A. Meir and John W. Moon. On the altitude of nodes in random trees. Can. J. Math., 30(5):997–
1015, 1978.

[PU83] Helmut Prodinger and Friedrich J. Urbanek. On monotone functions of tree structures. Disc.
Appl. Math., 5:223–239, 1983.

33

