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Two New One-to-one Correspondences on Trees

Robert Muth

March 27, 1997

Abstract. The classical one-to-one correspondence between ordered treeswith n+4 1
nodes and binary trees with n nodesis generaized in two ways:

1. monotonically labeled ordered trees «+ multi-dimensional binary trees
2. monotonically labeled binary trees «» multi-dimensional ordered trees

Simple generating functions for these tree classes are presented from which combina
torial information can be computed.

1 Introduction

In this paper we present two new extensions of the classical correspondence between binary trees with n
nodes and ordered trees with n+ 1 nodes.

After reviewing some basic conceptsin section 2 we shall devote section 3 to formalizing the classical cor-
respondence by describing graphical operationsthat transform ordered treesinto binary trees and vice versa.

The generalized families of ordered and binary trees belong to the class of “simply generated” trees— thus
their generating functionssatisfy certain (simple) types of functional equations. Given thesefunctional equa
tionscombinatorial information can be computed by inversion. Before we describethe new correspondences
we shall extend the class of simply generated tree familiesto the classes of:

e Multidimensiona simply generated tree families (section 4).

e Monotonically labeled simply generated tree families (section 5).

The new correspondences involve familes from both classes.

I n section 6 we present the corresponence between monotonically [abel ed ordered trees and multidimensi onal
binary trees. In section 7 we present the corresponence between monotonically | abeled binary trees and mul-
tidimensional ordered trees. Both correspondences reduce to the classical correspondence in the case of 1-
dimensional/1-labeledtrees. Both correspondenceswill be stated as graphical operationsthat show how trees
from one family can be transformed into trees from the corresponding family.

In section 8 we shall exploit the new correspondences to obtain results about the average label distribution
in monotonically labeled ordered and binary trees with n nodes.



2 Fundamentals

Definition 2.1 (Tree) Arooteddirected grapht = (V,E) withrootr(t) € V iscalled an (unordered,oriented)
tree, if indeg(r(t)) = 0 and indeg(v) = 1 for all other nodes (we will use the term node instead of vertex
throughout this paper).

If (v1,V2) € E, vy iscalled the father of v, and v, is called son of v;.
Two nodes v, and v, are called brothers, if they are sons of the same father.
If there is a path from node v; to node v,, we call v; a predecessor of v, and v, a successor of vi.

Thetreet’ = (V/,E') withroot r(t'), iscalled a subtreeof t = (V,E) if V' c VandE' = EN (V' x V') where
V' consistsof r(t') and all its successorsint.

Thesizeof atreet = (V, E) which is denoted by |t| is the number of its vertices (|V|).

In figurestheroot will be thetopmost node. Edges are directed downwards, i.e. leading away from theroot.
The empty tree, i.e. thetree with no nodes and edges, will be depicted by abox (O).

Definition 2.2 (Generating Function) Let F be afamily of treesandlet e: F — Ny be a mapping into the
natural numbers. The generating function F(z) of F (for €) is then given by the following (formal) power
series:

F@= 3 le'n)|

neNg
Conversely, if F(z) isa given generating function, [Z"]F (z) denotesthe coefficient of Z" in the formal taylor
expansion around the origin. By theinversion theorem, this coefficient will be |e=(n)|.

If eis a mapping F — MY, we obtain in an analogous manner a generating function in d variables —a
multivariate generating function :

F(z,...,29) = S let(m,..ng)| A2y

d
(ng,...,ng)eNg

and analogously:
(2. Z0F(z1,. .. 20) = | €Ny, .., ng)]

Unless otherwise indicated, we shall choose the function e, used in forming our generating functions to be
the size of thetree, i.e. e(t) = |t].

In [Fla88] Flgjolet describesan intuitiveway to translaterecursively defined combinatorial objectsinto func-
tional equations defining their generating functions. The method is successful for many “size” functionse.

Giving adetailed discussion of thetranslation rulesis outsideof the scope of thispaper. We will instead state
some examples that should enabl e the reader to apply the method.



Definition 2.3 (Binary Trees) Thefollowing symbolicequation definesthefamily of binarytreesrecursively
and translatesthe definition into a functional equation of its generating function.

2 AN

B B B B

| { { { |

B(z) = z + zB(z) + zB(2) + zB(2) B(2)

Thiscan beinterpreted as follows: Abinary tree consistsof a root to which up to two binary (sub-) treescan
be attached. The left (right) son of a nodev is also denoted by LSON(v) (RSON(V)).

(By excluding the empty tree the definition above differs dlightly from the definitionin [Knu73].)
For the generating function B(z) of ordered trees we obtain:
B(2) = z+2B(2) + 2B(2) + 2B(2)B(2) = 2 (1+ 2B(2) + B(2)?) (1)

Definition 2.4 (Ordered Tree) The following symbolic equation defines the family of ordered trees recur-
sively and transl ates the definition into a functional equation of its generating function.

s Tl AL AN

(0] O o0 O

| { { { {

O = z + 2z0(z) + zO(z) O(z9 + zO(2) O(z) O(2) + ...

Thiscan beinterpreted asfollows: An ordered tree consistsof aroot towhich arbitrarily many ordered (sub-)
trees can be attached.

For the generating function O(z) of ordered trees we obtain:
0(2) = z+20(2) + 20(2)0(2) + 20(20(20(2) +... = 2 (1- O(2)) ! 2

Thefunctional equationsfor B(z) and O(z) aresimilar in structure. Thismotivatestheintroductionof amore
general concept, the simply generated trees ((MM78]). Most of the frequently used tree families are simply
generated (an important exception being unordered trees).

Definition 2.5 (Simply Generated Trees) A family of treesF issaid to be simply generated, if its generat-
ing function F (z) satisfiesan implicit equation: F(z) = zO(F(z) ), where ©(t) isan analytic function of the
form:

_ n
o) = 1—|—n;cnt
defined in some disk |t| < R < o; with ¢, > 0 and ¢, > O for at least onen > 1.
By thisdefinitionthe families O and B of ordered and binary trees are simply generated. The corresponding
O-functionsare:
Oo(t) = 14+t+t24+t34...=(1-t)"tand ©)
Op(t) = 14 2t+t2respectively. (4)



3 TheClassical One-to-one Correspondence: O +» B

Solving the quadratic equationsfor B(z) and O(z) yieldsthe closed forms:

B(zg = (1-2z—v1-42)/(22) (5)
Oz = (1-v1-4z)2 (6)

It iswell known that the coefficents of O(z) and B(z) are just the Catalan numbers (cf. [Knu73]):

1 /2n 1
= — — >
2]B(2 n+1(n) Z*0@) (n>1)
Which leads us to the classical enumeration result:

Theorem 3.1 Thereareasmany ordered treesof sizen+ 1 astherearebinarytreesof sizen. Moreformally:
[{te O|[t|=n+1}| = [{teB][t|=n}|.

This can be written more compactly as an equation of generating functions.

O(2=z(B(z)+1) (")

What is more intuitiveisthe structural correspondence between members of O and B. Thefollowing recipe
shows how to bijectively transform ordered trees into the corresponding binary trees (c.f.[Knu73, pages
332ff]). We will aready make intuitive use of labeled trees even though they are defined | ater.

Given a (labeled) ordered tree, remove all edges except for those connecting a father with its leftmost son.
Then, add edges between brothers by connecting brother i with brother i 4+ 1 yielding an intermediate tree.
Finally rotate thisintermediate tree by —11/4 and remove the root.

Example 3.2 (Application of the Classical Correspondence)

Ordered Tree Intermediate Tree Binary Tree

P ob

redgp

When the root isremoved in the last step of the transformation itslabeling information islost. To overcome
this problem we require that the root be always labeled 1.

We are now concerned with formalizing the steps of the “recipe”.

We shall call the transformation from ordered trees to binary trees expqp, , and the inverse transformation
redo, . The graphical operations are given in Figures 1 and 2 (my denotes the label of the corresponding
node).
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Figure 1: Transformation expgp

The definition of redy, issomewhat different from expy, because we haveto “generate” some extrainfor-
mation rather than throwing information away. Therefore, red,, hasan upper index x, whose domainisthe

set of labels. Thisindex will be the labeling of theroot in the transformed tree. By the convention abovewe
have redy (t) := redg, 1(t).

3
=
=<

red X

Figure 2: Transformation redg, *

Theorem 3.3 Thetransformation expy, isa bijection between the d-labeled ordered treeswith n+ 1 nodes
and a root labeled 1, and and the d-labeled binary trees with n nodes.
Proof:

Obviously, expg, reducesthe number of nodesin atree by one. An easy induction on the number of nodes
showsthat expo, isinjective.

Bijectivity followsfrom the fact that expo, isamapping between two sets of the same cardinality.

An analogousresult can be derived for redq, inasimilar manner.



4 Multi-dimensional Smply Generated Trees

4.1 Multi-dimensional Simply Generated Trees

In this section we describe multi-dimensional simply generated families of trees which are an extension of
simply generated trees. Such trees were first investigated by Kemp in [Kem89, Kem93b, Kem95] who ex-
amined many different parameters and different probability models.

Definition 4.1 (Tree Family: Fy) Given an arbitrary simply generated family of trees F with ©(t) = 1+
¥ n>1Cnt" the corresponding family of d-dimensional simply generated treesis recursively defined by the fol -
lowing symbolic equations, where F, = F:

1 1 1 1 F R
F F F F
Fd _ @ d_l + Cl I— d_l + CZR d_l + C3 m d_l +
Fd Fa Py Fa Fa Fg

Thiscan beinterpreted asfollows: A d-dimensional simply generated tree consists of aroot towhicha (d —
1)-dimensional simply generated treesis attached. If ¢, # 0, an additional n d-dimensional simply generated
trees may be attached to thisroot as subtree.

In ad-dimensional tree, the nodes and edges that do not belong to the (d — 1)-dimensional subtrees are said
tobeinlayer 1. Similarly, thenodesand edgesinthe (d — 1)-dimensional treesthat do not belongto (d — 2)-
dimensional treesare said t bein layer 2, etc..

Thetree restricted to layer 1 nodesis called the header tree.

To make the description of node numbersin the different layersmore convenient, we introducethe following
abbreviations:

Definition 4.2 Lett = (V,E) € Fy. We define:

s(t) = |{veV|vbeongstolayeri }| ,and
SO = @m0 5 SO

Generating Functions
The generating function Fy(z) defined for d-dimensional trees:

[Z'Fa(2) = [{t € Fy | su(t) = n}



satisfiesthe following implicit equationswhich can be derived from the above definitions by using the trans-
lation rules from [Fla38].

Fi(z) = z6(FR(2) 8)
Fi(2) = Fa-1(2) ©(Fu(2)) (9)
If F(z) isthe generating function of the simply generated family of trees used to define Fy then F(z) must be

asolution of (8) and thus:

F(2 = F@2 (10)
Fi(@ = F(Fa_1(2) (11)

Sometimes it is desirable to take account of the numbers S(t) of nodes in the different layers of a multi-
dimensional treet. Thiscan be achieved by defining a multivariate generating function Fy(z1, . . ., Zy) with

(2. 2Rz, za) = [{t€Fg] (My...,ng) =§1)}] (12)
We have the functiona equations:
Fi(z) = z0(Fy(z)) (13)
Fa(za,...,24) = zFy_1(2,...,Z4) O(Fy(z1,...,24)) (14)
In amanner similar to the univariate case, we conclude:
Fi(z) = F(z) (15)
Fa(za,...,24) = KazaFi(z,...,Z)) (16)

Therelationship of the univariateand multivariate generating functionsis given by:

Fa(1,...,1,2) = Fy(2) (17)

Equations (11) and (16) can aso be obtained by applying the translation rule “substitution” from [Fa88],
sinceatreein Fy can beregarded astree in F whose nodes have be substituted by a single node plusatreein
Fa_1.



4.2 Special Case: Multi-dimensional Ordered Trees

Multi-dimensional ordered trees are a specia case of multi-dimensional simply generated trees, in whichthe
O-functionisgiven by: O(t) = Fnsot" = (1-t)~%.

Definition 4.3 (Tree Family Oq4) The family of d-dimensional ordered treesis recursively defined by the
following symbolic equations:

% 9 9 999
— 0 o o o
o, - d-1 I_ d-1, /? d-1 N d-1,
d d, 9 d, o 9

This can be interpreted as follows: A d-dimensional ordered tree consists of a root to which at least one
(d—1)-dimensional ordered trees is attached (as atree in the next layer). In addition, arbitrarily many d-
dimensional ordered trees can be attached to thisroot (as subtrees).

Example 4.4 (3-dimensional ordered tree with 5(t) = (5,8,15))

1 Layer 1 | Layer 2 | Layer 3 |

Generating Functions

Substituting ©(t) into the equationsfor the general case we obtain for the univariateand multivariate gen-
erating functions O4(z) and Oqy(2):

O1(z2) = 02 (18)
O4(z) = O(Oy_1(2)) (19

and
C~)1(21) = O(z) (20)
Od(z1,..,2z8) = O(z104_1(2,-.-,2d)) (21)



4.3 Special Case: Multi-dimensional Binary Trees

Multi-dimensional binary trees are a special case of multi-dimensional simply generated trees, in which the
O-functionisgiven by: Oy (t) = 142t 4-t2.

Definition 4.5 (Tree Family By) Thefamily of d-dimensional binary treesisrecursively defined by thefol-
lowing symbolic equations:

Bg-1 Bg-1 Bg-1
By = + / + / :
Bg By By By

+

Thiscan beinterpreted asfollows: A d-dimensional binary tree consistsof aroot towhichat least one (d — 1)-
dimensional binary tree is attached (as atree in the next layer). In addition, up to two d-dimensional binary
trees can be attached to thisroot (as subtrees). If thereisonly one subtree we distinguish between aright and
aleft subtree.

Example 4.6 (4-dimensional binary tree with §(t) = (4,7, 10, 13))

| Layer 1 | Layer 2 | Layer 3 | Layer 4 |

Generating Functions

Substituting @p(t) in the equations for the general case we obtain for the univariate and multivariate gen-
erating functions By(z) and By(2):

Bi(z2 = B(2 (22)
Ba(z2) = B(By_1(2)) (23)

and
I§;1(21) = B(zn) (24)
By(z1,....24) = B(zBy_i(2,...,24)) (25)



5 Monotonically Labeled Simply Generated Trees

5.1 Monotonically Labeled Simply Generated Trees

In this section we describe monotonically d-labeled simply generated families of trees. Monotone labelings
of tree familieswere investigated first in [PU83].

Definition 5.1 (Labeled Tree) Atreet = (V, E) together with a set of labelsM and a (total) labeling function
f:V — Miscalled a (totally) labeled tree.

IfM=1{1,...,d} wecall t d-labeled.
If f ispartial, thetreeissaid to be partially labeled.

In order to describe the number of occurrences of certain labels more easily we define the following abbre-
viationsfor d-labeled trees.

m(t) = (Mu(t),....me(t)) with
m(t) = [f7()]

If f ispartial, we define: mo(t) := |V — f=1(M)]|. Note, that [t| = T o<j<gMi(t) always holds.

Definition 5.2 (Monotonically d-labeled Tree) Ad-labeledtreet withalabelingfunction f iscalled mono-
tonically (increasing) d-labeled, if f(v;) > f(vi) whenever ‘vj isasonofv;'.

Definition 5.3 (Tree Family MFy) The family of monotonically d-labeled simply generated trees is recur-
sively defined by the following symbolic equations where MOg = 0 and ©(t) = 1+ ¥ 51 Cit" stemsfroma
simply generated tree family F:

1 1

1 1
N +C +C +
MF 4 = MF 4 4 1I 2/\ 3/‘\
Fq MF

MFd M d MFdMFdMFd

This can beinterpreted as follows, corresponding to the first term and the remaining terms.

If amonotonically d-labeled tree has aroot |abel ed differently from 1, thenit correspondstoa(d — 1)-labeled
simply generated tree whose label's have each been increased by 1 (symbolized by MF;" ,). If it hasaroot
labeled 1, n monotonically d-labeled simply generated trees can be attached (as subtrees) if ¢, # 0.

On consequence of the distinctionis important enough to put into a formula:

IMFg| — |[MFg_1| = |{t € MFy | theroot of t islabeled 1} (26)

Subsequently, we will use the letter “E” to prefix subfamilies of trees wheretheroot islabeled 1.

10



Generating Functions
The generating function MFy(z) with:

[ZMFy(2) = [{t € MFy | [t] = n}|

satisfies the following implicit equations which can be derived by using the translation rules from [Fla38].

MRy(z) = O
MF4(z) = MFy4_1(2) +zO(MFy(2))

(27)
(28)

Sometimes one wants to count the numbers m(t) of occurrences of the different labelsinatreet. Thiscan

be achieved by defining the multivariate generating function MFg(z, ..., zq) with

[z2™-... - zg"]MFq(zy,...,29) = |{te MFyq|m(t)=(ng,...,Ng)}|

We have the functional equations:

MFo() = 0

MF4(z1,....20) = MFy_1(2s,...,24)+ 21 O(MF4(zs,...,2g))

Therelationship of the univariateand multivariate generating functionsis given by:

MFq4(z,...,2) = MF4(2)

For the subfamily of treeswith rootslabeled 1 we have by the remark after Definition 5.3:

EMFy(2) = O(MRy(2))
and EMFq(z1,...,24) = 2z ©(MFq(zs,...,24))

Moreover, since unlabeled trees are isomorphic to trees label ed with just one label:

F(z) = MF.(z) = EMF4(2)

(29)

(30)
(31)

(32)
(33)

(34)

Littleisknown about the coefficients of thesegenerating functionsin general. In[PU83] several specia fami-
liesof treeswereinvestigatedincluding unordered trees (which are not simply generated). Theinvestigations

were limited to counting the number of trees.

For the special case of monotonically d-labeled ordered trees which is described below a new result was
published in [Kem93a]. We rediscover thisresult later and aso derive asimilar one for the special case of

monotonically d-labeled binary trees.

11



5.2 Special Case: Monotonically Labeled Ordered Trees

Monotonically labeled ordered trees are a specia case of monotonically labeled simply generated trees in
which the ©-functionis given by: ©q(t) = ypsot"= (1-t)7%.

Definition 5.4 (Tree family MOq4) The family of monotonically d-labeled ordered trees is recursively de-
fined by the following symbolic equation (MOg = 0):

1
= mofytet ¢ ] AN PR
MOd = Mod—l+. + + + + ...

MO MO MO, MO, MO MO

This can be interpreted as follows: 1f a monotonically d-labeled ordered tree has a root labeled differently
from 1, then it corresponds to a (d — 1)-labeled ordered tree whose labels have each been increased by 1.
(Symbolized by MO} _,.) If it has aroot labeled 1, arbitrarily many monotonically d-labeled ordered trees
can be attached (as subtrees).

Example 5.5 (Monotonically 4-labeled ordered tree with m(t) = (4,3,5,4))

Generating Functions

Substituting ©o(t) in the equations for the general case we obtain for the univariate and multivariate gen-
erating functionsMOy(z), EMOy(z) and MOq(2) , EMOy(7):

MOp(z) = EMOy(z) =0 (35)
MOg4(z2) = MOq4_1(2)+z(1—-MOy(2)) 1 (36)
EMO4(z) = z(1-MOy(2))7! (37)
and
MOo() = EMOp()=0 (38)
MOy(z1,...,2) = MOy_1(2,...,24) +z (1-=MOq(z1,...,29))"%  (39)
EMOq(z1,....2) = 2z (1—-MOy(2)~* (40)

12



5.3 Special Case: Monotonically Labeled Binary Trees

Monotonically labeled binary trees are a specia case of monotonically labeled simply generated trees in
which the ©-functionis given by : Op(t) = 1+ 2t +t2.

Definition 5.6 (Tree Family MBy) Thefamily of monotonicallyd-labeled binarytreesisrecursively defined
by the following symbolic equations (MBg = 0):

+

1 1
N
MBy = MBy_q* + +

M MB

1
Bd MBd d MBd

Thiscanbeinterpreted asfollows: If amonotonically d-label ed binary tree hasaroot |abel ed differently from
1, then it correspondsto a (d — 1)-labeled binary tree whose |abel s have each been increased by 1. (Symbol-
ized by MB}_,.) If it hasaroot labeled 1, up to 2 monotonically d-labeled binary trees can be attached (as
subtrees). If thereis only one subtree we distinguish between aright and aleft subtree.

Example 5.7 (Monotonically 3-labeled binary tree with m(t) = (4,6,7))

Generating Functions

Substituting ©y(t) into the equationsfor the general case we obtain for the univariateand multivariate gen-
erating function MBgy(z),EMBq(z), and MBy(Z) ,EMBy(Z):

MBo(z) = EMBy(2)=0 (42)
MByg(2) = MBy_1(2)+2z(1+MBqy(2))? (42)
EMB4(2) = z(1+MBy(2))? (43)
and
MBo() = EMBo()=0 (44)
MBqy(z1,...,25) = MBy_1(2s,...,20) +z(1+MBqy(z,...,25))>  (45)
EMBqy(z1,...,23) = z(1+MBy(z,...,2g))> (46)



6 A Oneto-one Correspondence: EMO3 « By

6.1 Identity 1
Theorem 6.1

ZIEMO4(2? = B(zZ'EMO4_1(2)?)

Proof: Let Yy := z '1EMOq4(2)?, then Yg_1 = (2+ Yg+ Y;1)~1 by (36) and (37). The identity follows
immediately after substituting Yg4_ into (5). O

Corollary 6.2 (Identity 1,[Kem93a])

7 lEMOy(2> = By(2)

Proof: The proof isan easy induction on d using z !EMO;(2)2 = z 1(0(2))? = B(2) = B1(2) for the basis
and (23) and Theorem 6.1 for the induction step. O
Passing to the coefficients of the generating functions we obtain the foll owing enumeration result.

Corollary 6.3 There are as many tuples of d-labeled ordered trees with the root labeled 1 and a total of
n—+ 1 nodes as there are d-dimensional binary trees with n nodes in the last (d-th) layer. More formally:
|{(t1,t) € EMOg x EMOq | [ta| + [tol = n+1}| = |{t € By | su(t) = n}.

Therest of this section is structured as follows: First we shall construct auxiliary tree families whose gen-
erating functions satisfy the left and right hand side of Theorem 6.1 (EXy and B[EXg]). Then we will give a
structural correspondence between members of EXy and B[EXy] in form of the transformations expex_pex

and redey_pex -

By iterating these transformations and employing two others ( eXpemo_ex a@nd redemo_ex ) Wefinally obtain
a transformation associated with Corollary 6.2.

6.2 Auxiliary Tree Families

Definition 6.4 (Tree Families Xg and EXy) Thetreefamily Xy and itssubfamily EXy are defined asfollows:
Xg={expop (t) |t € EMOq} and EXyg = {t € X4 | t hasaroot labeled 1}.

Thisdefinition isnot very handy. Theorem 6.7 will provide a better characterization of the tree family.

Definition 6.5 (Rightmost Branch, RA) Lett = (V,E) beabinarytreeandv € V. RA, C V isthe smallest
set containingv such that w € RA, — RSON(w) € RA, holds, i.e. RA, areall thenodeson arightmost branch
starting with node v.

Definition 6.6 (Property M) Lett = (V,E) be alabeled binary treewith labeling function f. Anodev € V
is said to satisfy Property M, if it either has no left son or for all w € RA ooy f(W) > f(v) istrue. This
definitionis clarified in Figure 3.

14



LSON(V)

RA | sonw)

Figure 3: Definition 6.6

Theorem 6.7 (Alternative Characterization of Xy) Xy consists of all those d-labeled binary tree whose
nodes satisfy property M.

Proof: Let g be an injectivelabeling function of an ordered treet = (V,E). We are now able to distinguish
theindividual nodes of thetree. Lett’' = (V',E') = expqp, (t). We say two nodesfromt and t’ correspond if
they have the samelabel. From thedefinition of expgy it should beclear thatif V' € V' correspondstov e V,
then each of the nodesin RA_ o) Must correspond to exactly one nodesin the set S, which is contains all
sons of v.

Now al thennodesin trees from Xy satisfy property M because the original trees were monotonically labeled.
Conversely, if al nodesin alabeled binary treet satisfy property M, redq, (t) generates atreet’ € EMOy

with expgp (t') =t implyingt € Xg. ]
Corollary 6.8 (Subtrees) If tisin X4 then any subtree of t isalsoin Xg.

Proof: Because all the nodes of t satisfy property M, thisis also true for the nodesin any subtree. a
Corallary 6.9 (Concatenation of Trees) Ift;,t; € X4 thenthetreet constructed by attachingt, t, astheleft
and right subtree to a new root nodewith label 1isalsoin Xy (even in EXy):

Proof: Becauset,t; € Xq all nodes of t except for the root satisfy property M. But since 1 is smallest |abel
the root satisfies property M, too. O
Corollary 6.10 (Left Subtree) Lett € Xywithrootr(t)andletty = (V;, E) betheleft subtreeoft then f (v) >
f(r)foralveVv.

Proof: By inductionon |Vj|. For |Vj| = 0 theclam istrivially true. For |V;| > O the subtree t; must be of

the form depicted in Figure 4. Because of Theorem 6.7 we have: Vici<nf(vi) > f(r). Additiondly, the
induction hypothesisappliesto al v; and their | eft subtrees. O

15



Figure 4: Corollary 6.10

Generating Function
For the generating functions X4(z) and X4(2) defined by:
[2Xa(2) = [{t € Xq | [t| = n}]

22Kz n2a) = € Xa | M) = (Mg,
We have by definition and the fact that expop is a bijection.

Xi(z) = EMOq(2)/z (47)
X (zl7 .Zy) = EMOy(z,....z4)/z (48)
Xi(z,....9 = X(2) (49)

For the generating functions EXy(z) and EX4(2) defined by:
[Z1EXa(2) = {t € EXq | [t| = n}

e B2 Z0) = € EXa | M(t) = (ny,...,ng)}

We have:
EX4(2) = 2X4(2)%=EMOq4(2)?/z (50)
EXa(z1,...,.20) = EMOq(z,...,20)%/z (51)
EXd(z...,2) = EXi(2) (52)

This follows from Corollaries 6.9 and 6.8, which establish a bijection between tuples of trees from X4 and
trees from EXy. Using Corollary 6.2 we get:

EX4(2) = B4(2) (53)
Passing to the coefficients of the generating functions we obtain the foll owing enumeration result.

Theorem 6.11 There are as many treesin EXy with n nodes asthere are treesin By with n nodesin thelast
layer. Moreformally: |[{t € EXq | [t|=n}| = [{t € Bq| sa(t) = n}|.
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Definition 6.12 (Tree Family B[EXy]) The tree family B[EXy] is recursively defined by the following sym-
bolic equation:

EXy4 EX{ EX{
B[EXd]zo—EXd+ / + : + /:

B[EX 4] B[EX4]  BIEXq] BIEX{]

Thiscan beinterpreted asfollows: A treet € B[EXy] isabinary treewhere treesfrom EXy have been attached
to every node.

Because every node of t is associated with a tree from EXy, we can think of the nodes as being substituted
by the trees.

tisapartialy labeled tree.

Generating Functions

For the generating functions B[EXy](z) and B[EXy](Y,2) defined by:

[Z1BIEX4)(2) = [{t € BIEX4]| > mi(t) =n}|

1<i<d

Yz ... Zg']BIEXa] (%, 21, .., 2) = |{t € B[EXq] | mo(t) = noAM(t) = (ny,...,Ng) }]

we have (using the tranglation rule “ substitution” from [Fla88]):

BEXJ(Z = B(EXu(2) (54
BEXi(Y,2 = B(YEX4(?) (55)
B[EX4](1,z...,2) = B[EX4](2) (56)

Theorem 6.1 implies:
BIEX4l(2) = EX411(2) (57)

Passing to the coefficients of the generating functionswe obtain the following enumeration result.

Theorem 6.13 Thereareasmany treesin B[EXy] with atotal of nlabeled nodesastherearetreesin EXgy, 1
with n nodes. More formally: [{t € B[EXg;1] | S1<i<cami(t) =n}| = [{t € EXy | [t| =n}|.

17



6.3 Auxiliary Transformations

Definition 6.14 (Transformations redemo_ex and €XPemo_ex )
The transformations redemo_ex : EXg — EMO3 and expemo_ex : EMO3 +— EXq are defined below:

1
€XP nat
-
red nat
ty t2 t t, t t,
t
&P emo-ex
red emo-ex

Thetransformation expemo_ex CONsistsof 2 steps. Sep 1 transformsty, t, € EMOyq intot;, t, € Xy by applying
transformation expg, to each tree. The next step mergesthese 2 treesinto asingletreet € EXy, by addinga

root nodethatislabeled 1. redgmo_ex iStheinversetransformation. expemo_ex iSbijective because expgp
is bijective.

The transformations we have just presented correspond to the enumeration results of (50).

Example 6.15 (Application example of the transformations redemo_ex anNd €XpPemo_ex )

exp -
emo—-ex

~f——

r
ed emo—ex
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Definition 6.16 (Transformation eXpPex_pex )
The transformation eXpex_pex : EXg — B[EXq_1] isdefined below:

ti1- trg-

The roots of the treest;; and t, are chosen as follows: they have to be in RA_ sonr) @nd RArgon ) respec-
tively; they must be labeled with 1 and they must be as close as possibleto the root of the whole tree.

If thereis no nodelabeled 1in RA, ) (RA,)) thentiz (tr2) is the empty tree.
Thetreest;;— and t,;— are obtained fromt;; and t;; by decreasing all labels by 1.

We postponethe proof of the transformations being well-defined and bijective until the next subsection.

Example 6.17 (Application example of transformation eXpex—_pex )

exp ex—bex — — O ~ @
- - SN VN N
- ~ ~ / N
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Definition 6.18 (Transformation redex_pex )
The transformation redey_pex : B[EXq_1] — EXq is defined below:

redex—bex —_—

Thetreest;;+ and t.,+ are obtained fromt;; and t;; by increasing all labels by 1.

The trees redex_pex (ti1) and redes_pex (tr1) are attached to the rightmost nodes in tj14 and t,;+ as right
subtrees.

Example 6.19 (Application example of transformation rede_pex )

red ex—bex @

red ex—bex red
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Theorem 6.20 The transformation expex—pex IS @ bijection between the tree familiesEXy and B[EXy_1].

Proof:

XPex—bex 1S Well-defined:

We have to show that the tree on the left of Definition 6.16 has a unique representation as an argument of
EXPex—bex - We also have to show that tj, and t,, are in the domain of eXpec_pex (i.6. EXg x EXy) and that
theresultingtreeisin the range of eXpex_pex (i-€ B[EX4_1])-

Without loss of generality we only consider the left subtree which consists of ;1 and t,2. As depicted in
Figure5, let v; betheroot of tj. Hence, all vj with j < i have labels greater than 1.

Because of Corollary 6.10 there are no nodes with label 1 in theleft subtree of any such v;.

Thus, t,— iswell-defined and similarly t;1—. If no such nodev; exists, no nodeintheentiretreet, islabeled
with 1.

Thetreest,,t;» are subtrees of atreein Xy. Because of Corollary 6.8 they are themselvesin Xy, and since
their roots are labeled with 1 they are also in EXg.

Now thetree consisting of tj;—,t;1— isin EXy_; by Corollary 6.9.

Figure 5: Left subtree of atreein EXy

Remark on the node numbers:

Lett betreein EXy and M(t) = (my,...,my). Obviously, M( eXPpex—_pex (t)) = (M + Mp, Mg, ..., my). That
is, the trees from EXy_1 generated by the transformation of t consist of as many nodes as the origina tree.
Moreover, the (unlabel ed) binary header tree to which the EXy_; trees are attached consists of my; nodes.
EXPex_bex 1SiNjective:

Lett! £ t2 betwo treesin EXq. We will show that eXPex—_pex (11) # EXPex—bex (12).

Because of the remark on the node numbers we can assume: [t1] = [t?].

The proof is an induction on the number of nodesn = |t = |t?].

Basisn = 1. Since there isjust one tree with one node which in addition must be labeled with 1, nothing
remains to be shown.

Now, suppose that the induction hypothesisis valid for trees with less than n nodes and let t*  t? be two
trees with n nodes. These trees must consist of subtrees as depicted in Definition 6.16.

We distinguish four different cases according to the subtree(s) in which t* and t2 differ:
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Lt # th;
Using the induction hypothesis it follows that eXPex_bex (th) # eXPex_bex (t5) and hence
EXPex—bex (tl) 7£ EXPex—bex (tz)

2. th#
Similar to 1.

3.ty £t
We havetl — # t2— and therefore expex_pex (t1) # EXPex_bex (t2)

4. th #
Similar to 3.

EXPex—bex 1S bijective:

Thisfollowsimmediately fromthefact that expex_pex 1S@mapping between two setsof the same cardinality
(Theorem 6.13).

a

By the above remark on the nodes numbers we get the following refinement of Theorem 6.13:

Corollary 6.21 (Refined Theorem 6.13)

[{t € EXg | M(t) = (Ng,....na) }| =
[{t € B[EXg—1] | M(t) = (N1 +nN2,Ng, ..., Ng) AMg(t) = Ny}

This can be written more compactly as an equation of generating functions:
EXd(z1,....24) = BlEXa_1)(21/22, 22, 23, - - ., Za)

An analogous result can be derived for redey_pex iN asimilar manner.
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6.4 A One-to-oneCorrespondence: By <+ EMO4 x EMOy

Lett! beatreein EXg withm(t!) = (my,...,my). Applying the transformation eXpe—_pex t0t! anew tree
t2 € B[EXg_1] with M(t?) = (my +mp, mg, ..., my) isgenerated.
t2 includes my trees from EXy_1.

Using the transformation again these my trees can themselves be replaced by trees from B[EXy_5] yielding a
treet® with M(t3) = (Mg + My + Mg, My, ..., My).

Iterating thisd — 1 timeswe get Y 1<j<q—1M; trees from EX; that consist of total of Y 1.j<qm nodes al of
which are labeled 1. If we remove the labelswe obtain trees from B,. Altogether, we have generated atree
inBy.

The iterated transformation we have just presented corresponds to the enumeration result of Theorem 6.11.
From the effects of the transformations on node numbers we are now abl e to refine this theorem.

Theorem 6.22 (Refined Theorem 6.11)
|{t € By |S(t) = (Ng,...,Ng)}| = HteEXy|M(t)=(ng,Nnp—Ng,...,Ng—Ng_1)}|
This can be written more compactly as an equation of generating functions:
EXa(z1,....23) = By(21/2, . .1 Z4-1/ 274, Z4)

An example of theiterated application of the transformation is given in Example 6.24.

Combine the iterated transformation with the transformations expemo_ex and redemo_ex Yieldsthe desired
one-to-one correspondence for Identity 1, namely eXpemo_p : EMOy4 x EMOy — By and redgmo_p : Bq —
EMO4 x EMOy4 which can be described as:

&&XPemo—b = UNMarkl o €XPex—_bex -1 €XPemo—ex (58)
redemo—b = €emo—ex © M€lex_pex © +o markl (59)

unmarkl standsfor the removal of labelsfrom the EX; treesand mark1 for labeling all nodes of B; with 1.
For d = 1 thisessentialy simplifiesto the classical correspondence.

Proceeding similarly as above we get a refinement of Corollary 6.2:

Theorem 6.23 (Refined | dentity 1)

{te By |S(t)=(ny,....M)}| =
|{(t1,t2) € EMOy4 x EMOy | m(tl) —|—rT1(t2) = (n1—|—1, Np—Nq,...,Ng— nd_l)}|

This can be written more compactly as an equation of generating functions:

Ba(21/22, ... 2Z4-1/24,20) = 2, 'EMOq(z4, ..., 24)?

Example 6.15 combined with Example 6.24 give an example for eXpemo_p and redemo_p - (Note, that the
labelsin the last layer have not been removed in order to keep the figure at a reasonable size.)
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Example 6.24 (Example of theiterated application of expex_pex and redex_pex )

EX,

EX3

x-be!

Pox-be
rede

EXy
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7 A One-to-one Correspondence: Oy <+ MBy

7.1 ldentity 2
Theorem 7.1

Z(1+MBy(z)) = O(z(1+MBy_1(2)))
Proof: Let Zg := (14 MBy(2)) , then Zg_3 = Zq+ Z3 by (42). The identity follows immediately after
substituting Zy_, into (6). O
Thisidentity regarding monotonically labeled binary treesis a new result.
Corollary 7.2 (Identity 2)

zZ(1+MBy(z)) = Oq4(2)

Proof: The proof isaninductionon d using z(1+ MB1(z)) = z(1+ B(2z)) = O(z) = O4(z) for the basisand
(19) and Theorem 7.1 for the induction step. O
Passing to the coefficients of the generating functions we obtain the foll owing enumeration result:

Corollary 7.3 There are as many monotonically d-labeled binary trees with n nodes as there are d-
dimensional ordered treeswith n+ 1 nodesin the last (d-th) layer. More formally: [{t € MBq | |t| = n}| =

[{t€Oq|s(t) =n+1}

Therest of thissection is structured asfollows: First we shall construct auxiliary tree familieswhose gener-
ating functions satisfy the left and right hand side of Theorem 7.1 (MBg and O[MBY]). Then we will givea
structural correspondence between members of M B(? andO[M Bg] inform of thetransformations expomb_mb

and I’edomb—mb .

By iterating these transformations we finally obtain a transformation associated with Corollary 7.2.

7.2 Auxiliary Tree Families

Definition 7.4 (Tree Family MBJ) Thetree family MBJ isobtained fromMBy by adding the empty tree O,
i.e MBY = MByU{O}.

Generating Functions

Thisimpliesfor the generating functions:

MBg(z) = MBqg(2)+1 (60)
MBy(2 = MBu(2)+1 (61)

With Corollary 7.2 we have:
ZMBj(2) = Ou(2) (62)

Passing to the coefficients of the generating functions we obtain the foll owing enumeration result.

Theorem 7.5 There are as many treein MBE with n nodes, asthere are treesin Oy with n+4 1 nodesin the
last layer. More formally: |[{t € MBY | [t| =n}| = |{t € Oqg | sy(t) = n+1}|.

Note, that this enumeration result is also valid for MBy instead of MBj — except for the pathological case
n=0.
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Definition 7.6 (Tree Family O[MBg]) The tree family O[MBj] is defined as follows:

— MBD MBD MBD MBlg
omeg ] = | / : /T\

O[MBE] O[MBE] O[MB%‘] O[MBE] O[MBE] O[MBE]

This can be interpreted as follows: A treet € O[MBj] is an ordered tree. But an additional tree from MBj

is attached to every nodeof t.

Because every node of t is associated with a tree from MBg, we can think of the nodes as being substituted

by the trees.

tisapartialy labeled tree.

Generating Functions

For the generating functions O[MBj](z) and O[ﬁég] (y,2) defined by:
[Z']0[MBg](2) = |{t € BIEXJ] | [t| = n}}|

yoZr - 740[ MBD 1y, 21,...,24) =
HtGO[MBdeO()—no/\m():(nlv--wnd)H

we get (using the construct “ substitution” from [Fla88]):

OMBS)(z) = <zMB€

Theorem 7.1 implies:

O[MBg](2) = ZMBg, 4(2)

Passing to the coefficients of the generating functions we obtain the foll owing enumeration result.

(63)
(64)
(65)

(66)

Theorem 7.7 There are as many treesin O[MBj] with a total of n+ 1 nodes, as there are treesin MBg,

with n nodes. More formally: |[{t € O[MBg, ] | [t| = n+1}| = |{t € MBg | |t|=n}|.
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7.3 Auxiliary Transformations

Definition 7.8 (Transfor mation eXpomp—mb )
The transformation expomp_om : O[MBj_;] — MBy is defined as fol lows:

EXPmb-omb f j
Pmb-omb

expmb omb

A X
AN

Thetreet+ are obtained fromt by increasing all labelsby 1.
Note that thistransformationisvery similar to expgp -

Example 7.9 (Application Example of Transformation eXpomp—_mb )

ex
IOomb—mb
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Definition 7.10 (Transformation eXpomb—om )
The transformation redomp—mp : MBg — O[MBj._,] is defined as follows:

mb it mb Ombit mb ombit

m>1 or

A A o

mb omb i E
1 .
mb -0

Thetreet— are obtained fromt by decreasing all labelsby 1.

Note that thistransformationisvery similar to redq .
“m” isthe node on the rightmost branch that islabeled 1 and as close to the root as possible.

Example 7.11 (Application Example of Transformation redgmp_mn )

omb-mb
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Theorem 7.12 Thetransformation expomp—mp iSa bijection between thetree familiesO[M B(?_]j and MBE.

Pr oof:
Remark on the node numbers:

Let t bein O[MBj] with m(t) = (my,...,my_1) and mp(t) = my). Obviously M( eXpomp_mp (t)) = (Mo —
1,m,...,m4_1) holds.

&XPomb—mb iSiNjective:

Let t! = t2 be two treesin O[MBY]. We will show that eXpomp_mb (t1) # €XPomp_mb (t2). Because of the
remark on the node numbers we can assume Mg (t1) = my(t?).

The proof is an induction on the number of unmarked nodesn = my(t) = my(t?), which is equivalent to the
number of nodes in the ordered header tree.

Basisn = 1: Because there is only one tree with a single node, the trees from M B(?_l which are attached to
them must be different, but then the transformed trees are clearly distinct.

Now, supposetheinduction hypothesisbe valid for node numberslessthan n and let t* and t2 be 2 treeswith
n nodes in the header tree. These trees must consist of subtrees as depicted in Definiton 7.8 We distinguish
two different cases according to the subtree(s) in which t* and t2 differ:

1t At2

Using the induction hypothesis it follows that:  expomp_bm (t}) # €XPomb_mb (t2) and thereby
€XPomb-mb (tl) # €XPomb—mb (tz)

2.t At
We have ti+ £ t2+ and thereby eXpomp—mb (11) # XPombmb (t2)

&XPomb_mb 1S bijective:

Thisfollowsimmediately from the fact that expomp—mp 1S @ mapping between two sets of the same cardi-
nality. (Theorem 7.7).

O
By the above remark on the nodes numbers we get the following refinement of Theorem 7.7:
Corollary 7.13 (Refined Theorem 7.7)

[{t € MBg | M(t) = (ng,...,ng)} = (67)

|{t € O[MBg_y] | M(t) = (ng,...,Ng) AMg(t) = Ny + 1} (68)
This can be written more compactly as an equation of generating functions:

——0 ———
ZlMBd (Zlv"'vzd) = O[MB(?_]_](ZLZZM'WZd) (69)

An analogous result can be derived for redomp_mopx N asimilar manner.
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7.4 A Oneto-to Correspondence: Oy <+ MBY

Lett! beatreein MBS with m(t!) = (my,...,my).

Thetransformation redom,_mp generatesatreet? € O[M By _,] with m(t2) = (mp,mg, ..., Mg) whichincludes
1+ my treesfrom MBj._;.

These 1+ my trees can themselves be transformed into trees from MBY_, yielding a tree t2 with m(t%) =
(Mg, My, ..., mq) whichincludes 1+ m + m, trees from MBj .

Iterating thisd times, we get 15 1j<qm empty trees.
Removing these empty treeswe finally obtain atreein Oq.
Hence, we have found the desired one-to-one correspondence for Identity 2, namely expo_mp : Og — MBj
and redy_mp : MBS — Og4 which can be described as:
EXPo-mb = EXPomb-mb 4o addo (70)
redo_mp = remd o redomb_mb (71)

remO stands for the removal of the empty trees from O[MBg] as described above and addd for the at-

tachment of empty trees to every node of atreein O. For d = 1 this essentialy simplifies to the classica
correspondence.

Looking at theeffects of the transformationson node numberswe can statethefoll owing refinement of Corol-
lary 7.2:

Theorem 7.14 (Refined | dentity 2)
[{t€ Og|S(t) = (ny,...,ng)}| = [{t € MBG | M(t) = (N~ L, M —Nyg,...,Ng — N1} (72)
This can be written more compact as an equation of generating functions.
zlﬂ/ITSS(zl,...,zd) = C~)d(zl/zz,...,zd_1/zd,zd) (73)

An example of theiterated application of thetransformationisgivenin Example 7.15. (Note, that the empty
treesin thelast layer have not been removed in order to keep thefigure at areasonable size.)
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Example 7.15 (An application example of exp,_mp and

g
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8 Application: Analysisof the Label Distribution in EMO4 and MBy

According to [Kem95, Theorem 7b] the asymptotic expected number of nodesin layer | of ad-dimensional
simply generated tree with n nodesin thelast layer 1(d, |, n) (assuming equidistribution of the trees) isgiven
by:

[(d,l,n) ~ &(d,l)n (N — o) (74)
. @(Ui) — uiO’(ui)
th: dl) = 75
" D Igilg_(!—l O(u) ()
Where the u; are recursively defined by:
Up = smallest positivesolution of x@'(x) = O(x) (76)
Ur1 = ui/O(ui) for i >0 (77)

Note, that not al valuesfor n might actually occur as valid node numbersin the last layer.
For the specia case of multi-dimensional ordered trees we have:

&o(d,l) = |_(! l(1—2ui)/(1—ui) and u;=1/4, uy1=u(l—uy) for i>0

From Theorem 6.23 and a symmetry argument we can infer that — assuming equidistribution of all trees
from EMOyq4 with size n — the asymptotic expected number of occurrences of label m, denoted My (d, m, n),
isgiven by:

Mo(d,mn) ~lo(d,mn) —lp(d,m—1,n)  (Nn— o)

We have — in a dlightly different shape — rediscovered a result from [Kem93a] where a one-to-one corre-
spondence between monotonically ordered trees and multi-dimensional extended binary treeswas presented.

For the specia case of multi-dimensional binary trees we have:

Ep(d,l) = |_(! (1-u)/(A+2u+u?) and up=1, Uy1=uU/(1+2u+u?) fori>0
I<ixd-1

From Theorem 7.14 we can infer that — assuming equidistribution of all trees from MBy with sizen — the
expected asymptotic number of occurrences of label m, denoted My, (d, m, n), isgiven by:

Mb(dvmvn)NIb(dvmvn)_lb(dvm_lvn) (n—>00)

The following tables state the asymptotic expected label distributionsfor small values of d:

Labd Distribution of MBy in Percent Labd Distribution of EMOy in Percent

Lo 1] 2] 3[ 4] 5[ 6J[4"[ 1[ 2[ 3] 4] 5] 6]

1| 100.0 1 || 100.0

2| 66.7| 333 2| 60.0 | 40.0

3| 512|256 | 231 3| 434|290 276

4| 421 210|189 | 18.0 4| 342|228 |21.7 213

5| 3581|179 |16.1 | 153 | 14.8 5| 283|189 | 180|176 | 17.3

6| 313|156 |14.1| 134|129 | 127 6| 241|161 | 153|150 148 | 146
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9 Conclusions

We have presented two new correspondences between families of monotonicaly labeled and muilti-
dimensional simply generated trees generalizing the classical correspondence between binary and ordered
trees.

The search for the two correspondenceswas motivated by enumeration resultslike Corollary 6.3 which chal-
lange one to establish systematic correspondences between the classes of objectsinvolved.

The first correspondece solves an open problem from [Kem93a] namely to find a combinatorial interpreta-
tion of the functional relation z-!EMOy(2)? = Bq(2) (Corollary 6.2). Kemp's paper also describes another
correspondence between monotonically labeled ordered and multi-dimensional extended binary trees.

The question arises naturally, whether there are more such correspondences. Or, why such correspondences
arelimited to binary and ordered trees only. No systematic approach to answer this question has been under-
taken so far.

The actual coefficients of the generating functions defined in equations 8/9 and 27/28 may be recovered by
computational inversion. Mathematica routines for computing these coefficients can be obtained by email
frommut h@s. ari zona. edu.
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