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This dissertation describesAlto, a platform for object code modification for Digital

Unix/Alpha executables. Object code modification, also called binary rewriting, allows

us to change compiled and linked programs, thereby extending the process of code gen-

eration well past the compilation phase of a program.

Object code modification is becoming increasingly important. One reason for this

is the recent trend of making programs available as executables only — without the

corresponding source code.

We explain the difficulties encountered by object modification, especially in thearea

of program analysis, and show how they are dealt with inAlto. Several improvements

to register liveness analysis are presented.

Alto has been used to implement an optimizer which allows us to evaluate the ben-

efits of classical compiler optimizations when applied to object code. This optimizer

outperforms the vendor-supplied optimization tools significantly.



Alto has also been used to instrument programs in order to generate sophisticated

execution profiles, such as value profiles. We show how such profiles can be profitably

exploited using a novel technique — guarded code specialization — and how this opti-

mization can be incorporated into the optimizer.

Finally, we consider the issue of code compression, i.e., usingAlto to make pro-

grams smaller rather than to make them faster. A variety of transformations are presented

which are able to reduce the code size of programs substantially.
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ABSTRACT

This dissertation describesAlto, a platform for object code modification for Digital

Unix/Alpha executables. Object code modification, also called binary rewriting, allows

us to change compiled and linked programs, thereby extending the process of code gen-

eration well past the compilation phase of a program.

Object code modification is becoming increasingly important. One reason for this

is the recent trend of making programs available as executables only — without the

corresponding source code.

We explain the difficulties encountered by object modification, especially in thearea

of program analysis, and show how they are dealt with inAlto. Several improvements

to register liveness analysis are presented.

Alto has been used to implement an optimizer which allows us to evaluate the ben-

efits of classical compiler optimizations when applied to object code. This optimizer

outperforms the vendor-supplied optimization tools significantly.

Alto has also been used to instrument programs in order to generate sophisticated

execution profiles, such as value profiles. We show how such profiles can be profitably

exploited using a novel technique — guarded code specialization — and how this opti-

mization can be incorporated into the optimizer.

Finally, we consider the issue of code compression, i.e., usingAlto to make pro-

grams smaller rather than to make them faster. A variety of transformations are presented

which are able to reduce the code size of programs substantially.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

This dissertation is about direct modifications of object code. Such modifications may

occur either at a very late stage during linking (link time) or after linking (post link

time). Both approaches are quite similar: integrating modifications within the linker will

simplify parsing of the code and might give access to slightly more information about

the code, while changing object code after linking provides a very clean separationof

responsibilities and does not require access to potentially proprietary linkersource. In

what follows we will not distinguish between the two approaches.

Traditionally, it is the task of the compiler or assembler to generate objectcode and

it seems complex and cumbersome to change object code once it has been produced.

Nevertheless, the number of applications where object code modification is successfully

employed grows rapidly. This is partly due to the fact that computers are becoming

powerful enough to cope with the often quite high resource demands of object code

modification.

The following list describes the most popular applications of object code modifica-

tion.

Customization Most software vendors ship software in executable form. Because of the

high maintenance and testing cost there is a reluctance to produce more than one

version of an executable for any one platform. To ensure that the software works
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on all systems, the vendors aim their executables at the lowest common denomina-

tor of the architecture. However, the systems the software runs on might be quite

different, their CPUs might have slightly different instruction sets, cache sizes,

pipelines, functional units, even the number of CPUs might be different. Consider,

for example, the Windows 95 operating system which runs on such different CPUs

as: x486, Pentium, Pentium Pro, Pentium II, Pentium III, Pentium Celeron, AMD

K6-2, AMD K6-3, Cyrix M-2, etc. However, there is only one version of this

software available. As another example consider the Alpha family of CPUs which

used to lack instructions for loading/storing individual bytes and words. Instead,

instruction sequences were used to emulate these elementary operations. Recent

members of the CPU family have load and store instructions for bytes. A typical

software vendor will most likely compile his programs not using the new instruc-

tions to ensure that his software runs on all CPUs. Consequently, users with state

of the art systems experience suboptimal performance.

Object code modification can help customizing a program by making use of new

features of the CPU when those are present in a system without requiring recom-

pilation or waiting for new compiler releases supporting these features.

Customization usually leads to faster programs. However, one could imagine a

situation were the example above is reversed, and in which we are presented with

executable code compiled for the latest member the Alpha CPU family. We want

to run it on an old version of the CPU, no longer supported by the software vendor.

We can use object code modification to replace all the instructions which load and

store bytes or words with emulating instructions.

Customization can also be used in combination with profiling to tune a binary for

common input data and program usage. Suppose a certain user mostly exercises
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the spell checker and the display rendering portion of a word processor. It would be

beneficial to reorder those components within the program to reduce the likelihood

that they conflict in the instruction cache. Furthermore, assume that this person

almost exclusively uses the Times font in his word processor documents. Clearly,

this will change the behavior of the display rendering code: certain branches will

or will not be taken with higher probability and certain values will be more likely

to populate certain registers. Adapting the display rendering code for this common

case — possibly at the expense of slowdowns for the uncommon case (e.g., the

Helvetica font) — might be greatly beneficial to this particular user.

Binary Translation Taking customization to the extreme, we can attempt to translate

the object code to run on a different platform. A few such translators have been

implemented commercially:FX!32 is a Windows NT/x86 to Windows NT/Alpha

translator [15] , Freeport Express is a Solaris/Sparc to Digital Unix/Alpha trans-

lator [71],VEST translates OpenVMS/VAX to OpenVMS/Alpha [70, 64], andmx

translates Ultrix/Mips to Digital Unix/Alpha [70, 64].

Binary translation is also useful for the fast emulation of a new or fictitiousplat-

form before actual hardware is available, allowing compiler writers, for example,

to test their code generator in advance.

Binary translation often requires a runtime software emulator for the sourceplat-

form, in order to cope with code that is generated on the fly and which cannot

be statically translated. A translation that falls back to an emulatorfor the source

platform is called hybrid translation. The above mentioned FX!32 system actually

uses emulation by default and will apply binary translation only to the frequently

executed portions of a program in a separate offline step.

Translators can obviate the need for porting software if one is willing to pay the
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price of a small performance penalty.

Program Analysis/Profiling Program analysis and profiling tools are the most popular

applications for object code modification. Tools that instrument programs to deter-

mine basic block execution frequencies are very common. This information can be

used by the compiler for profile-driven optimizations, by developers to help them

focus their tuning efforts on the relevant parts of the code. Architects might use

profiling to determine the dynamic instruction mix of applications or their data and

instruction cache behavior [75, 47]. Other tools instrument the code to examine the

accuracy of branch predictions or scheduling decisions made by the compiler with-

out the use of special hardware (such as bus monitoring systems) or simulation. A

common class of tools instrument object code to obtain address traces, which help

architects improve cache design. These traces are very large, often consuming sev-

eral gigabytes of disk space. Instead of writing them to disk and processing them

offline, a recent trend adds the processing code to the object code and invokes

it whenever a new piece of trace information would normally be written to disk.

While the first approach typically causes the instrumented program to run about

100 times slower [49], the second approach reduces this slowdowns to a factor of

10 [66].

There are, of course, other ways of obtaining profiling information. One is to make

the compiler instrument the code [38], and another is to use statistical methods [4].

Instrumenting code at a higher level than object code may not yield accurate in-

formation of the type computer architects care about, and it also criticallychanges

the program behavior that we want to analyze (analogously to “Heisenberg’s un-

certainty principle” in physics). Statistical methods, on the other hand, sometimes

have problems with accuracy.
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Debugging Object code modification also has a wide range of useful applications in

debugging. Suppose that because of a programming error a memory cell is acci-

dentally overwritten. Locating the point where the overwrite occurs can be avery

difficult task. If there is no hardware support on the CPU we could resort to mod-

ifying the compiler to add checks, but this would be slow and libraries would not

be covered. Another approach which has been used in the past and which is also

rather slow is to single step through the program, continuously checking whether

the memory cell has changed. A more efficient solution is to modify the object

code to add checking code before each write instruction that will trap on a write to

the memory cell in question.

Purify uses object code modification to detect memory leaks, out of bounds mem-

ory/array accesses, and use of uninitialized data [40].

JiTI, A debugging aid with a somewhat different flavor, inserts instrumentation

code before load and store instructions in a parallel program which will assure that

these loads and stores occur in a formerly observed order. This enables determin-

istic replays in (shared memory) parallel environments which is a great help in

reproducing bugs [62, 61].

Software Fault Isolation (Sandboxing) Software fault isolation is closely related to the

debugging techniques mentioned above. We describe a scenario from [72]: Sup-

pose we have a piece of untrusted object code which we want to link with trusted

code. One concern is that the piece of untrusted code might accidentally modify

data structures maintained by the trusted code and hence corrupt the system. To ad-

dress this problem we could assign the untrusted code to its own segment within the

applications address space, and add checking code before each read/write instruc-

tion. The checking code will trap on a read/write attempt outside of the segment.
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The overall effect is very similar to that which Java achieves with a combination

of type checking and runtime checks.

Another application is the prevention of certain security attacks that exploitbuffer

overflows on the stack. Most attacks exploit buffer overflows inside the programs

to (a) create a subroutine that spawns a root shell on the stack (b) overwrite the

return address in the current stack frame with the start address of the newly created

subroutine. We can prevent this attack by inserting checks before each indirect

control transfer (jump,return), to validate that the address being jumped to

lies in a valid range.

Code Optimization Intuitively, code optimization should be the domain of the com-

piler, since it has access to high level information such as data types, control struc-

tures, alias information, etc., which greatly aids in generating efficientcode and

which is not readily available at the object code level. So why bother optimizing

object code?

� We want to be compiler/language independent.

Working with object code makes our optimizations essentially compiler and

language independent, similar to a common back end used with several front

ends. However, we still may need to recognize certain compiler and/or lan-

guage specific idioms at the object code level (like computed jumps) and treat

them specially, in order to improve the effectiveness of the optimizations.

� We want to add a new optimization to a compiler.

Often we do not have access to the compiler source. Or, the documentation

of the compiler source is so poor that adding the new optimization might be

difficult. Hence, it is very popular to try out new optimizations in a simple and
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well documented compiler likelcc [34] whose source is publicly available.

However, it is questionable whether results obtained in this way will transfer

to a production quality compiler. Applying optimizations at link time, on the

other hand, allows us to essentially add optimizations to the best available

compiler without modifying it.

� The program source or parts thereof (libraries) are unavailable.

Especially for old programs (legacy software), source code is often unavail-

able or it is unclear which version of the source corresponds to the program

we want to optimize. Optimizing the object code appears to be the only way

to improve performance of these programs.

� The optimization cannot be easily performed at compile time.

Consider the case where we want to improve the control transfer (jump) code

for subroutine invocations. Depending on the distance of the jump (in number

of bytes), different jump instructions can be chosen, a pc-relative jump with

short displacement, a pc-relative jump with long displacement, or an absolute

jump. Unfortunately, the compiler is usually not able to estimate the jump

distance, and hence needs to pick the most conservative and hence suboptimal

instruction, viz. the absolute jump. At link time, on the other hand, we know

exactly what the jump distance is and can pick the optimal instruction.

� We want to perform whole program optimization.

Whole program optimization can, in theory, be done at compile time but this

is often hindered by missing source for library code. This problem does not

exist for statically linked object code.

� We want to utilize profiling information obtained at the object code level.

Generating profiling information by instrumenting object code is very popu-
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lar and, because of tools likeAtom (cf. 1.2), also fairly easy. The problem is

to exploit this information in an optimizing compiler. There is an “impedance

mismatch” between the information provided by the object code level profil-

ing and the source level compiler. This “impedance mismatch” problem is

also found in a source level debugger. Such a debugger actually works at the

object code level, but needs to back map the information to source code. This

is a hard problem — especially when the code is highly optimized. When op-

timizing at the object code level, on the other hand, the mapping is one-to-one

and does not present any problems.

Code Compression/CompactionWhile the cost metric we tried to reduce in the pre-

vious cases was time, we may also be concerned about space. Besides classical

optimizations which usually also reduce code size, we can reduce code size using

special compression techniques. Compressed code must either be decompressed

before execution (called wire representation) [31] or it can be executed without

decompression [35, 21]. The first method results in a smaller compressed rep-

resentation than the second, but requires the overhead of decompression before

execution. This overhead may be negligible and in fact maybe compensated for by

the savings in transmission or retrieval cost. A more severe problem, however, is

that it requires space for the decompressed code.

The second method preserves executability of the code and is therefore more

amenable to object code modification even though the borders between the two

methods are somewhat flowing. If we prepend a piece of code to the wire repre-

sentation that first performs decompression and then runs the decompressed ex-

ecutable, we have technically preserved executability. Tools like thiswere very

popular when computers were not equipped with hard disk drives and one tried to
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cram as much information as possible onto floppy disks [59].

It is also possible to add some sort of interpretive techniques to an executable to

reduce space requirements. For example, on the Motorola 68000 based Atari ST

computer the designers were not able to fit the entire operating system into the 192

kB ROM. So they replaced common opcode sequences with illegal instructions1

and installed an interpretor to handle the illegal instruction exceptions [42].

A similar but less system specific mechanism factors common code sequences into

subroutine calls [35, 27, 21]. This can in principle be done by a compiler but

often the intermediate representations used in the compiler do not provide enough

support for this kind of transformation. In addition, more of the code is visible at

link time, e.g., libraries, increasing the number of opportunities for factoring.

This dissertation describesAlto (A Link Time Optimizer), a platform for modifica-

tion of object code.Alto has been implemented for Digital Unix/Alpha executables and

is being ported to Linux/Alpha. The main emphasis of the dissertation will be on object

modification for optimization, code compression, and profiling.

Despite being a fairly system specific piece of software, the experience gained with

Alto should be transferable to other platforms/architectures (especially RISC based sys-

tems) since the Alpha is a very generic RISC CPU. In fact, its instruction set is very

similar to low level code representations such as ILOC [58], LIR [55], and Omnicode

[73, 1] so thatAlto could also be viewed as a backend for monolithic compilation.

1The illegal instructions were taken from a pool of reserved opcodes called “line-f” because the first
hexadecimal digit of each opcode was “f”. Later those opcodes became legal floating point instructions
and the scheme was abandoned.
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1.2 Related Work

This section describes other projects in the area of object code modification and points

out their differences fromAlto.

OM

OM is an optimizer for executables initially implemented for DEC-stationsrunning Ul-

trix/Mips, and later ported to Digital Unix/Alpha.

OM was designed as a separate pass after linking but, unlikeAlto relies on the linker

to provide additional information not found in the executable.OM can also make use of

profiling information [67, 68].

One of the design goals forOM has been to make it fairly light-weight. Compared to

Alto, it does not perform many optimizations, and the ones it does perform are restricted

to those that do not consume a lot of resources. The following is a list of optimizations

performed byOM:

� Code size reduction by unreachable code removal

� Compaction of the memory area that holds compile time constants by elimination

of unused and duplicate constants

� Reordering of global data structures (variables) to provide more efficient access

� Profile guided code positioning and alignment

� Instruction (re-)scheduling

� Peephole optimization

� User-directed procedure inlining
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ATOM

Atom (Analysis Tool withOM) is an instrumentation tool generator for the Digital

Unix/Alpha platform which originated in theOM project but has since then diverged.

Atom is a very mature and user-friendly tool which is used extensively inside DEC(now

COMPAQ). It has been used for many big applications including OS kernels [66].

Atom strictly separates the tool specific part from the common infrastructure needed

by all tools. The tool specific part consists of an analysis component and an instrumen-

tation component. Both components can be written entirely in a high level language

(typically C), which distinguishesAtom from any other tool, includingAlto.

The instrumentation code is linked with theAtom instrumentation engine to create

an instrumentation tool. This tool will parse an executable and insert functioncalls at

specific places via theAtom API. The functions called are those defined in the analysis

code. Calls to these functions can be inserted before/after program execution,shared

library loading, procedures, basic blocks, or instructions. The parameters passedto the

functions are determined by the instrumentation code. Possible parameters are: current

register values, instruction fields, symbol names, addresses, etc.

Atom even allows the analysis code to dynamically allocate memory. This is non-

trivial because memory allocated by the analysis code should not be visible to the in-

strumented program in order to preserve program behavior as much as possible, i.e., the

values returned by calls tomalloc() should be the same in the original and in the

instrumented version of the program.

Registers modified by an analysis routine are saved to the stack and later restored.

Some attempts are made to reduce this overhead but it is still quite significant. Programs

instrumented usingAtom/pixie (see below) typically suffer a slowdown of a factor of

2 to 3.



25

Among the tools that have been (re-)implemented withAtom are:

� pixie. A reimplementation of a basic block execution frequency profiling tool.

The profile generated by pixie is used byOM to guide some of its optimizations

[69, 75].

� Third Degree. A memory leak detection tool.

� Hiprof. A performance analysis tool that collects data similar to, but more accu-

rate than,gprof.

SPIKE

Spike is an adaptation ofOM to the Windows NT/Alpha platform.Spike consists

of an instrumentation part and optimization part. Both are embedded in theSpike

optimization environment (SOE), which transparently handles the task of collecting and

managing profiling information for the user [18, 17, 36].

Spike is aimed at call intensive programs, with loops that span multiple procedures

and procedures that have complex control flow and contain numerous basic blocks.

The instrumentation part is apixie adaptation which provides basic block and con-

trol flow edge execution frequency counts. A minimum of basic blocks and edges are

instrumented and register liveness analysis is used to find free scratchregisters for the

instrumentation code. The instrumentation code bloat is thereby only 30%. There are

plans to replace the instrumentation part by statistical sampling using DCPI [4].

Spike automatically scans the executable for the dynamically linked libraries

(DLLs) it uses and processes them as well.

The important transformations performed by the optimization part are profile-driven:

� Pettis-Hansen style profile guided code placement [57] improves instruction cache

performance.
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� Hot cold optimization (HCO) reduces the length of the most frequently executed

paths in a procedure.

Spike reportedly speeds up program execution by as much as 33%, which seems

to be mostly due to the profile guided code placement. The HCO optimization benefit is

unclear since no execution time improvements are reported.Spike seems to be most

effective with call intensive programs. Programs that spend a significant amount of time

in inner loops, e.g., FORTRAN programs, usually get very little speedup. Compared to

Alto very few optimizations have been implemented.

EEL

EEL (Executable Editing Library) is a C++ library that tries to hide much of the complex-

ity and system specific detail of editing executables. It was developed at the University

of Wisconsin-Madison and runs on Solaris/Sparc and Ultrix/Mips. [48]

EEL tries to be as system and machine independent as possible. Theoretically, tool

builders should be able to modify an executable without being aware of the details ofthe

underlying architecture or operating system, or being concerned with the consequences

of deleting instructions or adding foreign code.EEL’s programming interface is not as

high level asAtom’s but the programmer has more control over the instrumentation pro-

cess sinceAtom can only insert subroutine calls and not modify existing instructions. As

an intermediate representationEEL employs a machine independent RISC-like abstract

instruction set. However, instrumentation code (called snippets) consists of concrete

instructions that must be rewritten in machine language for different architectures. A

register scavenging scheme that takes advantage of calling conventions is used to pro-

vide the scratch registers for the snippets, and to reduce the amount of register spilling.

Hence the snippet defined by the tool writer and the actual code added as instrumentation
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to an executable might differ in the allocation of registers. If other changesare wanted,

e.g., adjustments of offset/displacements, the tool writer needs to back-patch the snippet

just before it is added to the binary. The number of instructions is not allowed to change

at this point.

EEL does not use relocation information and falls back to runtime code when static

analysis is insufficient. This also prevents the user from editing certain basic blocks

(typically 15-20% of all basic blocks) which are excluded from instrumentation. The

authors claim that in most case alternative basic blocks can found and edited instead. For

this reasonEEL is a instrumentation platform rather than optimization platform.

EEL has been used to reimplement theqp andqpt tools [8] which are used to obtain

path profiles.

Etch

Etch is a binary modification tool for Windows NT/x86 executables. It was developed

jointly at the University of Washington and Harvard University and its architecture was

strongly influenced byAtom. Like Atom it separates instrumentation from analysis. To

instrument a program,Etch is invoked with the name of an executable and a dynami-

cally linked library (DLL). The DLL contains the analysis code in the form of callback

functions that are invoked byEtch to modify the executable. Those functions can in

turn call theEtch API to perform the actual instrumentation [60].

Etch includes a runtime library with the modified executable which might make it

less suitable for optimizations. The only reported optimization is code layout based on

the Pettis-Hansen algorithm [57]. LikeSpike it can handle dynamically linked executa-

bles and will instrument/optimize DLLs used by a program.
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1.3 Contributions of Alto

Alto has been implemented in the C programming language and works reliably on

all programs tested. The software can be downloaded free of charge from theAlto

webpagehttp://www.cs.arizona.edu/alto/.

The main contributions are listed below.

1. Program analysis (Section 3)

We present several improvements to register liveness analysis. We show how to

preserve correctness of the analysis in the presence of control flow anomalies typ-

ically not encountered in high level languages but frequently observed in object

code. A novel insight about the fixpoint equations for the analysis is exploited to

speed up its computation time by 25%. We also show how the consideration of

calling conventions and callee saved registers decreases the number of live reg-

isters. Furthermore, We examine space-time tradeoffs and space/time-precision

tradeoffs.

2. Classical compiler optimizations (Chapter 4)

We evaluate the usefulness of an extensive set of classical compiler optimizations

in the context of link time code modification. Common sense suggests doing clas-

sical compiler optimization in the compiler. However, we find significant optimiza-

tion opportunities at link time. Programs optimized with our system typically run

6% faster than those produced with the vendor-supplied compiler infrastructure

alone.

3. Common case specialization (Chapter 5)

We discuss guarded code specialization, a new optimization based on value pro-

files, which could also be incorporated into ordinary compilers. We show how to
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select program points for value profiling and present a cost-benefit analysis to au-

tomatically determine which of those program points are to be specialized for what

value. Guarded code specialization results in an additional speedup of up to 10%

for some programs.

4. Code compression (Chapter 6))

We examine opportunities for code size reduction via object code modification.

Using code factoring transformations on top of classical compiler optimizations,

we are able to reduce code size by 38% on the average.
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CHAPTER 2

OVERVIEW OF THE ALTO SYSTEM

Object code modification is a three phase process consisting of :

� Parsing — transformation of the object code into an intermediate representation

� Editing — manipulation of the intermediate representation

� Code Generation — transformation of the intermediate representation back into

object code

In this chapter we will discuss these phases, describe the common problems encoun-

tered, and show howAlto handles them.

We assume a generic Unix executable format depicted in Figure 2.1 [39]. Besidesthe

file representation, the runtime organization in memory is also shown.

The Program Header contains offsets and sizes of the segments and tables and their

location in the address space. It also contains the code address where executionstarts.

The Text Segment contains read-only data, i.e., the program code and constants. The

Data Segment contains initialized data that is read/writable. The BSS Segment contains

zero initialized read/writable data and is therefore reduced to an address/size pair in the

file representation. The Relocation Table contains information which allowsus to change

the program to run at different absolute positions in the address space. The Symbol Ta-

ble contains information traditionally used by a debugger to establish a correspondence
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between the source code and the object code derived from it. The symbol table is op-

tional and can be removed from the executable using thestrip command. If present,

Alto will use it to make its output more user-friendly. For example, instead of reporting

that “the subroutine at address 0x120003ac has been inlined”, the message “subroutine

memcpy has been inlined” will be printed.

Program Header Text Segment

Data Segment

BSS Segment

Text Segment

Data Segment

Relocation Table

Symbol Table

File Memory 

Figure 2.1: Generic executable format

2.1 Parsing

The task of parsing is to transform the object code into some intermediate form which is

more suitable for further modifications.

Alto is using a three-address intermediate language that is very close to the Alpha

machine language [2]. Although this might seem to makeAlto very non-portable, this

three address code is in fact very similar to the low level intermediate representation used

in many compilers [54, 55, 58].
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2.1.1 Code Discovery

Code discovery tries to locate the parts of the object file that contain executable instruc-

tions. Locating code is not always straightforward. Often read-only data (string con-

stants, jump tables, floating point constants) and program code are interleaved in the

Text Segment. This problem is aggravated if the architecture has variable length instruc-

tions (like the Intel x86 architecture). In this case one has to be very careful where to

start decoding instructions. Usually one has to couple code discovery with control flow

graph construction, i.e., whenever a new branch target is identified one starts decoding

instructions at that address until one encounters a control flow changing instruction. In

the presence of indirect jumps, however, it might still be impossible to discover all code.

Fortunately, on the Digital Unix/Alpha platform, compilers are very disciplined and

place code and data into separate areas of the Text Segment. Furthermore all instructions

are 32 bits wide.

If the program is dynamically linked, code discovery may also try to identifythe

shared libraries used by the program and to parse them as well.Alto currently does not

support dynamically linked code.

2.1.2 Control Flow Graph Construction

An important part of the intermediate representation is the control flow graph, which is

also essential for the dataflow analyses performed during subsequent phases.

Conceptually, an executable consists of a set of subroutines (functions) denoted as

Functions. The distinguished subroutineentryfundesignates where the execution of

the program begins. Each subroutinef consists of a collection of nodes (basic blocks)

Nodes[ f ]. A noden consists of a sequence of instructionsInstructions[n], in which con-

trol always enters at the beginning and leaves at the end without intervening branches.
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The first instruction of a node is also calledleader. The collection of all the basic blocks

in all subroutines is denoted asNodes. To simplify reasoning about nodes we assign

types to them, denoted byType[n]. There is a wide variety of types. The most rele-

vant ones are:call for those nodes that initiate a subroutine invocation,return for those

nodes where execution resumes after the subroutine call,init for those nodes starting a

subroutine,exit for those nodes ending a subroutine. Each subroutinef has exactly one

node of typeinit denoted asInitNode[ f ] and exactly one node of typeexit denoted as

ExitNode[ f ].

Nodes are connect by directed edges, indicating possible control flow. An edge might

connect two nodes within the same subroutine — in which case it is called an intrapro-

cedural edge — or two nodes in different subroutines — in which case it is called an

interprocedural edge. The collection of all edges is denoted asEdges. The set of imme-

diate successor (resp. predecessor) nodes of a noden is denotedSucc[n] (resp.Pred[n]).

An interprocedural control flow graph consists of the directed graph created byNodes

andEdges. It is very similar to the program supergraph described in [56]. The (intrapro-

cedural) control flow graph for subroutinef is the subgraph of the control flow graph

induced byNodes[ f ].

Creating control flow graphs for programs in high-level languages is straightforward

[2]. Matters are somewhat more complex at link time because control flow has been

obscured by the compilation process, and because we need to deal with machine-level

idioms for control transfer such as computed jumps. The algorithm used byAlto to

construct a control flow graph for an input program is as follows: As starting points

we use all the Text Segment addresses appearing as literal data somewhere inthe object

code file. Here, relocation information helps us differentiate between real addresses and

random bit patterns that just look like addresses. Included with those addresses is the

start address ofentryfunwhich can be found in the program header.
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Now the “standard” algorithm [2] is used to identify more leaders and basic blocks.

A leader that is reached by a call instruction begins a subroutineinit node.1 A function

is assumed to extend from oneinit node until just before the nextinit node, in instruc-

tion sequence order. This ensures that each subroutine has exactly oneinit node. The

assumption that control enters a subroutine at exactly one point and leaves at exactly one

other point is occasionally violated resulting in irregular interprocedural control flow

which our analyses and optimizations need to cope with. Section 2.1.4 describes how the

introduction of compensation edges can support analyses and optimizations in that case.

Next edges are added to the control flow graph. Subroutine calls are modeled as de-

picted in Figure 2.2. Acall edge leads from the basic block containing the call instruction

(call node) to the target block which is, by definition, a subroutineinit node. Alink edge

connects thecall node to the basic block beginning right after the call instruction (return

node). A return edge leads from theexitblock of the called function (callee) to thereturn

node.

For any call nodenc, ReturnNode[nc] denotes the corresponding return node and

Callee[nc] denotes the function being called. Similarly, for anyreturn node nr ,

CallNode[nr ] denotes the correspondingcall node andCallee[nr ] denotes the function

that was called.
1Some of the leaders determined by literal addresses also mark function init blocks and this can be

determined using the relocation information.
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Caller Callee

callsite node
init

node
exit

node
return

call

edge
link

edge

return

call
edge

node

Figure 2.2: Modeling subroutine calls

Unconditional branches are eliminated from the intermediate representation since

this information is implicit in the edges.

Whenever an exact determination of the target of a control transfer is not possi-

ble, Alto estimates the set of possible targets conservatively, using a special node

unknownnodeand a special subroutineunknownfun. 2 This simplifies the implemen-

tation of data flow analyses because we can associate worst-case data flowassumptions

with them and otherwise treat them as ordinary nodes and subroutines. If there is an in-

direct jump to an unknown target we add an edge from the jump block tounknownnode

and if there is an indirect call to an unknown subroutine it is simulated by a call to

unknownfun. Conversely, if the start address of a block appears as literal data some-

where in the object code file, we assume it can be the target of any indirect jumpand

add an edge fromunknownnodeto the node. If the start address of a subroutineinit node

2unknownnodealso represents theinit andinit node ofunknownfun.
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appears as literal data somewhere in the object code file we assume the subroutinecan

be the target of an indirect call and simulate a call fromunknownnode.

2.1.3 Computed Indirect Jumps

Alto works hard to find the actual target of indirect jumps and calls and will adapt

the control flow graph accordingly. As described in the previous section, a jump with

a unknown target will initially be modeled as a jump tounknownnode. Alto tries to

determine whether such a jump is a computed jump derived from a C switch statement (or

similar construct in other languages) by pattern matching a code template withthe code

surrounding the jump.3 The pattern matching is non-trivial since the compiler might

have reordered instructions, peephole-optimized instructions, or moved instructions into

different nodes. If we find a match, we have implicitly determined the location and

dimension of the jump table and can refine the control flow graph by replacing the edge

to unknownnodewith edges to the actual target nodes.

This transformation is done as part of the editing phase because it greatly benefits

from other transformations and analyses, such as liveness analysis.

2.1.4 Control Flow Anomalies

Machine code is not as well behaved as high-level source code. In particular certain

assumptions about control flow, which seem reasonable at a higher level, are routinely

violated at the machine code level.

One assumption is that control leaves a subroutine only at itsexitnode or its call sites.

At the level of executable code, this assumption can be violated byescaping branches,

i.e., ordinary (non-subroutine-call) control transfers from one subroutine into another.

3The template was derived by inspecting switch statement code produced by various compilers



37

Typical causes forescaping branchesare tail call optimization and code sharing in hand-

written assembly code (found, for example, in some numerical libraries).

Another assumption is that a subroutine call returns to its caller at the instruction

immediately after the call instruction. This assumption is violated by non-local control

transfers via subroutines such assetjmp andlongjmp.

Alto handles both cases by the inserting additional edges, calledcompensation

edges, into the control flow graph as depicted in Figure 2.3.

escaping
edge

edge
compensation

Caller: f Callee: g

node node

nodenode
exit exit

initinit

(a) escaping edge

setjmp longjmp

unknownfun

unknown

exit

init
node

exit
node

init
node

node

compensation edges

node

(b) setjmp/longjmp

Figure 2.3: Use of compensation edges

In the first case, anescaping branchfrom a caller subroutinef to a callee subroutine

g results in a single compensation edge from theexit node ofg to theexit node of f .

Conceptually, this ensures that control flow enteringf can also exit fromf — this is

important for the data flow analyses to safely approximate program behavior. Without

the escape edge, data flow facts cannot be propagated back tof where they originated.

In the second case, the subroutinesetjmp has a compensation edge from
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unknownnodeto its exit node, while the subroutinelongjmp has a compensation edge

from its exit node tounknownnode. This models the fact that the location of an invoca-

tion ofsetjmp can later be jumped to from unknown places, and that callinglongjmp

will cause a jump to an unknown location. Again this is necessary to insure a safe ap-

proximation for data flow analyses.

Some of theescaping branchescan be avoided by duplicating code. We may choose

to do this during the editing phase if the resulting code growth is reasonable.

2.2 Editing

In the editing phase the intermediate representation is transformed to achieve the desired

goal, e.g., instrumentation, optimization, or code compression.

The following chapters present a variety of concrete transformations and the analyses

necessary to support them. Here we will only discuss issues of a more general nature.

In Alto we restrict ourselves to changing code and code-related pieces of data like

jump tables. The data portion of the program is left unchanged. The reason for this is that

most high level information necessary to make correct transformations within the Data

Segment is either lost during compilation or is extremely hard to recover. For example,

we are not able to change the orders of variables in a structure or record.

2.2.1 Scale Problems

Figure 2.1 summarizes the basic characteristics of the SPECint95 benchmark suite [65],

which are used in most of the experiments in this thesis. The benchmark programs were

statically compiled, and hence the numbers include library subroutines.
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Benchmark #Instructions #Edges #Nodes #Subroutines

compress 18759 9224 5021 224

gcc 295096 158723 77505 2130

go 71721 29454 15696 605

ijpeg 54611 21532 11534 639

li 34768 17225 9138 646

m88ksim 46117 21940 11473 528

perl 90318 44997 22662 618

vortex 127383 58107 28465 1026

Table 2.1: Characteristics of the SPECint95 benchmarks

As can be seen from the table, some benchmarks are quite big, e.g.,gcc has about

300,000 instructions. Its intermediate representation inAlto consumes almost 100MB.

Hence, any algorithm applied during the editing phase must be aware of the potentially

huge size of the intermediate representation. Algorithms that work well in conventional

compilers (which operate on a per module or per subroutine basis) might be impracti-

cal for object code modifications because of the high time and especially the high space

complexity. Clearly, any algorithm that is quadratic in the number of instructions will

not be feasible. Stingy algorithms — preferably linear in both time and space — are

necessary. Often we will be forced to make tradeoffs between precision and efficiency.

Furthermore, memory locality of the algorithms and data structures significantly influ-

ences performance.
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2.2.2 Self Modifying Code

Self modifying code and runtime generated code are a major hurdle to object code mod-

ification. Self modifying code had become somewhat out of fashion but is now gaining

popularity again either directly [30, 29] or indirectly for just-in-time compilation [33].

Alto can cope with some forms of self modifying code, but will not work under

all circumstances. Imagine a piece of codeA in the Text Segment which is changed at

runtime by another piece of codeB. Note that this violates the read-only character of the

Text Segment4. If we changeA in the editing phase the assumptions made byB aboutA

might not be valid anymore. This could cause the program to work incorrectly.

However, in the more likely case that code is generated on the fly into a dynamically

allocated piece of memory there will be no problems. The code cannot be altered by

Alto since it is not part of the Text Segment. Invocation of such code will look like

an indirect control transfer. This control transfer is safely modeled usingunknownfun,

making worst case assumptions about the runtime behavior of the code.

2.3 Code Generation

After the transformations on the intermediate representation are finished, we need to

generate a new version of the executable. Converting the three-address code back into

machine instructions does not pose any problems. Adding the unconditional branches

that have been removed during parsing is also straightforward. The difficult part lies in

translating the old code addresses into new ones and dealing with changed segment sizes.

4Unfortunately, the programmer can use system calls to change access restrictions for segments



41

2.3.1 Address Translation

The problem of address translation is a consequence of the fact that, after object code

modification, code addresses (in particular subroutine start addresses) will have changed.

Address translation has historically been a major problem for object code modification

systems. Several solutions have been proposed and implemented [75].

One approach is to avoid the problem by allowing only transformations that do not

change code addresses, e.g., old code can not be deleted or new code inserted. We

are allowed only to substitute code, e.g., substitute an instruction with an unconditional

branch to a piece of code which executes the original instruction and after doing some

extra work branches back. Clearly, this approach is only useful for instrumentation but it

can be used to instrument a running program [61] in its address space, while it is running.

The second approach translates some addresses statically and others dynamically,

viz. at runtime. Pc-relative branches and subroutine calls are easily handled statically;

so are branches and subroutine calls to absolute addresses. Targets of these branches and

procedure calls are, by definition, basic block beginnings. Therefore all the system has

to do is to remember, for each basic block, the original address. After code generation

the new addresses of the basic blocks are also known, and we can translate old addresses

to new addresses. Other control transfer instructions, i.e., indirect control transfers, are

handled by runtime address translation. Here a code snippet is added before an indi-

rect control transfer (jump) which, with the help of an additional table, translates old

addresses into new addresses at runtime. The table is an array of new addresses indexed

by old addresses, and is appended to the Text Segment. If the snippet cannot find an

address in the table, it leaves it unchanged. This will allow runtime generated code to

work properly. This approach is not well suited for optimizing executables, but has been

used for instrumentation [75, 47]
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The third approach — the one used byAlto — does all the address translation

statically. This approach makes the assumption that indirect control transfers will branch

to addresses that have ultimately been loaded (verbatim) from memory. Hence all the

static translator has to do is to find the memory locations containing code addresses and

replace them with the corresponding new address. These memory locations — which

might be in the Text Segment, Data Segment or Program Header — are identified using

relocation information. This approach relies on the compiler to avoid certain coding

styles that would break the scheme. For example, consider the two translations ofa C

switch statement using a computed jump in Figure 2.4.5.

.text

lda r1, table

addq r1, r0, r1

jmp (r1)

table:

br targetA

br targetB

br targetC

(a) bad implementation

.data

targets:

.word targetA, targetB,

targetC

.text

lda r1, targets

addq r1, r0, r1

ldq r1, 0(r1)

jmp (r1)

(b) good implementation

Figure 2.4: Translations of a C switch statement using a computed jump

The value which is switched upon resides in registerr0. The targets of the switch

statement are the labelstargetA, targetB, andtargetC (not shown). The left

5The meaning of the Alpha machine instructions is explained in Appendix A
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hand side solution (a) adds the value ofr0 to the table address to obtain the target of

the indirect jump. The indirect jump is followed by an unconditional branch to the final

destination. The right hand side solution (b) adds the value ofr0 to the address of a table

containing the possible jump targets, then loads the target address and jumps to the final

destination directly.

While there are no problems with the right hand side solution (b), the left hand side

solution (a) will not work, because the target of the computed jump is the result of an

arithmetic computation (rather than an indirect reference).Alto has no way of telling

that thetable of unconditional branches is part of a computed jump, and should there-

fore remain unchanged. In fact,Alto removes all unconditional branches from its in-

termediate representation and instead maintains them as edges in the controlflow graph.

The resulting empty nodes may be moved around and possibly merged with other non-

empty nodes.

2.3.2 Segment Growing

Object code modification will usually change the size of the Text Segment. This is nota

problem if the size shrinks, since we can pad it to the original length. However,if the size

grows beyond the original size (because of, for example, inlining or instrumentation),

the end of the new Text Segment may overlap the beginning of the Data Segment in the

address space, forcing us to move the Data Segment and the BSS Segment to higher

addresses. This can be achieved statically by using relocation information to identify all

memory locations containing addresses inside the Data Segment or BSS Segment and

updating them accordingly. Or, it can be achieved dynamically, by inserting code before

all load and store instruction to update the load/store address if necessary. Luckily, under

Digital Unix/Alpha, there is usually a very big gap between the end of the Text Segment
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and the beginning of the Data Segment,6 which eliminates the problem. The growth of

the Text Segment might not exclusively stem from code growth: we also need extra space

for new read-only constants and jump tables. For instrumentation purposes we might

also want to increase the size of the Data Segment to make space for profilingcounters.

Again, because of the gap between the Text Segment and Data Segment under Digital

Unix/Alpha, this can be easily accomplished by growing the Data Segment toward lower

addresses and placing the extra data structures before the original Data Segment.

6The Text Segment typically start at 0x120000000, and the data segmentat 0x140000000.
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CHAPTER 3

ANALYSES

In this chapter we describe techniques, analyses, and data structures used byAlto

which are useful independently of the purpose of object code modification. The main

focus is on register liveness analysis, which will provide the necessary scratch registers

for many transformations performed during the editing phase.

3.1 Register Liveness Analysis

Liveness analysis attempts to determine whether a value kept in a variable or storage

location may be used later on during program execution. A variable is said to belive if

this is the case. Liveness analysis of variables is a well-understood technique employed

by most compilers to guide optimizations such as useless code elimination and register

allocation [55]. Liveness analysis can also be performed on object code if we let registers

take the place of variables. Its main purpose is to identify useless code and to provide

scratch registers for the transformations performed during the editing phase.

Compared to traditional variable liveness analysis which is usually intraprocedural,

the register liveness analysis for executable code presented here will be interprocedural.

Interprocedural analysis on registers is simplified by the fact that there isno aliasing

between registers and the number of registers for any given processor is bounded by a

constant. What makes it difficult are control flow anomalies (cf. Section 2.1.4) and scale

issues (cf. Section 2.2.1).
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Related Work: Work most closely related to our own has been done by Srivastava

and Wall on theOM optimizer [67] and by Goodwin on theSpike optimizer [36]. We

improve on their liveness analysis in three ways. Firstly, we have changedthe underly-

ing flow equations resulting in three sets of almost identical equations, which simplifies

implementation and reasoning about correctness. Secondly, we accelerate thefixpoint

iteration by exploiting a novel insight about the interdependence of the various pieces

of data flow information. This idea is also applicable to liveness analysis of variables.

Thirdly, we show how to reduce the space requirement of the analysis by recomputation

and exploitation of the new data flow equations.

Furthermore, we explore ways to improve the accuracy of liveness analysis. For a

known technique involving callee-save registers we point out a possible generalization.

3.1.1 Interprocedural Data Flow Analyses

Intraprocedural data flow analyses consider all possible paths in the control flow graph of

a subroutine to give an estimate of what data flow facts hold at a given node. Conditionals

are not interpreted, i.e. we assume that both sides of the branch can always be taken. As

a result, we may include paths that will never be executed in reality and theestimate will

be somewhat conservative.

For interprocedural data flow analyses we can simply adopt the intraprocedural ap-

proach and regard the interprocedural control flow graph as one big ordinary control flow

graph, treatingcall andreturn edges as regular edges and ignoringlink edges. Analyses

performed in this fashion are calledcontext insensitiveinterprocedural analyses. Such

analyses are simple and fast but often yield rather conservative estimates since many

paths in the interprocedural control flow graph do not reflect real program executions.

An example is shown in Figure 3.1 where two call sites call the same subroutinef . Con-

sider the pathC1! IN ! EX! R2. This path returns to the wrong call site and hence



47

does not occur in any execution. But since variables2 is used inR2 and not defined along

the path we conclude thats2 is live atC1, while in facts2 is dead, as it is defined inR1.

Paths which do not return to the wrong call site are calledrealizable paths, e.g.,

C1! IN !EX!R1 orC2! IN !EX!R2. See [46] for a more rigorous definition.

Callsite 1 Callsite 2

s1 = 0

call  f() call  f()

t2 = s2 + v0

Callee: f
s2 = 0

C1

R1 R2
t1 = s1 + v0

s2 = 0

EX

IN

return

v0 = 1

C2

returnreturn
edge edge

call
edge

call
edge

link
edge

link
edge

Figure 3.1: Unrealizable path in context insensitive analyses

A context sensitive interprocedural data flow analysis considers only realizable paths

in the interprocedural control flow graph [52].

3.1.2 Interprocedural Register Liveness Analysis

In this section we discuss two flavors of interprocedural liveness analysis:Context sensi-

tive and context insensitive. Tuning possibilities are described and performance numbers

presented.
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3.1.2.1 Context Insensitive Analysis

As described in the previous section, the context insensitive liveness analysisuses the

standard intraprocedural analysis [55] and applies it to a program’s interprocedural con-

trol flow graph treatingcall andreturnedges as ordinary edges, and ignoringlink edges.

The analysis iteratively computes the fixpoint of the equations below

LiveIn[n] = use[n][ (LiveOut[n]�def[n]) n2 Nodes

LiveOut[n] =

S

s2 Succ[n] : LiveIn[s] n2 Nodes
subject to the initial values

LiveOut[n] := /0 n2 Nodes

LiveIn[n] := /0 n2 Nodes

R denotes the set of all registers. For each noden, LiveIn[n] (LiveOut[n]) contains the

registers live at the beginning (end) of the node,def[n] contains the registers which are

defined inn, use[n] contains the registers which are used before they are defined inn.

3.1.2.2 Context Sensitive Analysis

For context sensitive liveness analysis we must restrict ourselves to realizable paths

through the interprocedural control flow graph. This is achieved by considering intrapro-

cedural paths only and modeling subroutine calls using summary information for the

called subroutine [52]. Conceptually, allcall andreturn edges are removed from the in-

terprocedural control flow graph. Data flow throughlink edges is subject to modifications

described by the summary information for the called subroutine.

Two pieces of information are necessary to summarize the effects of each subroutine

f on liveness:

� MayUse[ f ]. The set of registers that may be used byf . A registerr may be used by

f if there is a realizable path fromInitNode[ f ] to a use ofr without an intervening

definition ofr. MayUse[ f ] hence describes the set of registers which are live at the
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beginning ofInitNode[ f ] independent of the calling context and hence are live at

the end of anycall nodenc calling f . Typically these are the registers which are

used to pass arguments to subroutinef .

� ByPass[ f ]. The set of registers which if live atnr are live atnc for anycall nodenc

calling f . Typically these are the register which are not used at all byf .

We also define

� MustDef[ f ]. The set of registers which are defined (written to) on all paths from

InitNode[ f ] to ExitNode[ f ].

� MustDead[ f ]. The set of registers which are defined on all paths fromInitNode[ f ]

to ExitNode[ f ] and are not used before they are defined. Clearly,MustDead[ f ] =

MustDef[ f ]�MayUse[ f ]

OnceByPassandMayUseinformation has been computed for each subroutine, live-

ness information is computed as follows:

PhaseLive : Computation of LiveIn and LiveOut:

iteratively compute the fixpoint of the data flow equations listed below

LiveIn[n] = use[n][ n2 Nodes

(LiveOut[n]�de f[n])

LiveOut[n] =

S

s2 Succ[n] : n2 Nodes^ Type[n] 62 fcallg

LiveIn[s]

= MayUse[ f ][ n2 Nodes^ Type[n] = call ^

(ByPass[ f ]\LiveIn[n0]) n0 = ReturnNode[n] ^ f = Callee[n]

subject to the initial values
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LiveOut[n] := /0 n2 Nodes

LiveIn[n] := /0 n2 Nodes

MayUse[ f ] := as computed by PhaseMayUse f2 Functions

ByPass[ f ] := as computed in PhaseByPass f2 Functions

The important aspect is the computation for thecall nodes. A register is live at the

end of acall node if the register is used by the callee (MayUsecase) or it is live at the

correspondingreturnnode and not defined — on at least one realizable path — inside of

the callee (ByPasscase). This gives us some choice in the selection/computation of the

ByPasssets. If a register is inMayUse[ f ] we can include it inByPass[ f ] even if the reg-

ister is never live at any of the correspondingreturnnodes. Srivastavaet al. [67] choose

ByPass[ f ] to beMustDead[ f ]. The problem with this approach is that it introduces a

mutual dependency betweenByPassinformation andMayUseinformation which com-

plicates the flow equations. Goodwin [36] choosesByPass[ f ] to beMustDe f[ f ] which

does not have this problem and is therefore preferable. In fact, any set which lies be-

tweenMustDef[ f ] andMustDef[ f ][MayUse[ f ] is a valid candidate forByPass[ f ]. Our

choice forByPass[ f ] is a superset of Goodwin’s1 and will result in more uniform data

flow equations. Below we show how theByPassandMayUsesets are computed.

PhaseMayUse : Computation of MayUse[ f ] :

iteratively compute the fixpoint of the data flow equations listed below

1it is difficult to give more intuitive description for this choice other than the fixpoint equations



51

MayUseIn[n] = use[n][ n2 Nodes

(MayUseOut[n]�de f[n])

MayUseOut[n] =

S

s2 Succ[n] : n2 Nodes^ Type[n] 62 fcall;exitg

MayUseIn[s]

= MayUse[ f ][ n2 Nodes^ Type[n] = call ^

(ByPass[ f ]\MayUseIn[n0]) n0 = ReturnNode[n] ^ f = Callee[n]

MayUse[ f ] = MayUseIn[InitNode[ f ]] f 2 Functions

subject to the initial values

MayUseOut[n] := /0 n2 Nodes

MayUseIn[n] := /0 n2 Nodes

MayUse[ f ] := /0 f 2 Functions

ByPass[ f ] := as computed in PhaseByPass f2 Functions

PhaseByPass: Computation of ByPass[ f ] :

iteratively compute the fixpoint of the data flow equations listed below

ByPassIn[n] = use[n][ n2 Nodes

(ByPassOut[n]�def[n])

ByPassOut[n] =

S

s2 Succ[n] : n2 Nodes^ Type[n] 62 fcall;exitg

ByPassIn[s]

= (ByPass[Callee[n]]\ n2 Nodes^ Type[n] = call ^

ByPassIn[n0]) n0 = ReturnNode[n]

ByPass[ f ] = ByPassIn[InitNode[ f ]] f 2 Functions

Subject to the initial values

ByPassOut[n] := /0 n2 Nodeŝ Type[n] 6= exit

:= R n2 Nodeŝ Type[n] = exit

ByPassIn[n] := /0 n2 Nodes

ByPass[ f ] := /0 f 2 Functions
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Contrary to the intraprocedural liveness analysis or the context insensitive analysis

the choice of the starting values is crucial, e.g., initializingByPassOut[ f ] of non-exit

nodes toR as in [36] yields overly conservative results [37]. Differing from Goodwin’s

approach we have modified the equation forByPassIn[n] by adding (unioning)use[n]

to the right hand side. This makes ourByPasssets strictly bigger than his but since

use[n] � MayUseIn[n] holds,ByPassIn[InitNode[ f ]] will still lie between MustDe f[ f ]

andMustDe f[ f ][MayUse[ f ]. The major virtue of this change is that it makes the equa-

tions of the three phases sufficiently similar that they can be unified into just onesimple

and compact set of equations (cf. Figure 3.2). The code implementing the analysis,

which uses the unified equations by means of a subroutine call is also correspondingly

simpler and smaller. The bigger sets do not affect the performance if they arerealized as

bit vectors.
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Unified Dataflow Equations:

DataIn[n] = use[n][ (DataOut[n]�de f[n]) n2 Nodes

DataOut[n] =

S

s2 Succ[n] : DataIn[s] n2 Nodes^ Type[n] 62 NoTypes

= MayUse[ f ][ (ByPass[ f ]\ n2 Nodes^ Type[n] = call

DataIn[ReturnNode[n]])

Summary[ f ] = DataIn[InitNode[ f ]] f 2 Functions
Unified Initial Values:

DataOut[n] := /0 n2 Nodeŝ Type[n] 6= exit

:= ExitData n2 Nodeŝ Type[n] = exit

DataIn[n] := /0 n2 Nodes

Summary[ f ] := /0 f 2 Functions
Phase Adaptations:

DataIn DataOut NoTypes Summary ExitData

PhaseByPass ByPassIn ByPassOut fcall;exitg ByPass R

PhaseMayUse MayUseIn MayUseOut fcall;exitg MayUse /0

PhaseLive LiveIn LiveOut fcallg — /0

Figure 3.2: Unified fixpoint computation

3.1.2.3 Tuning the Context Sensitive Analysis

Even though our presentation of the data flow equations as phases suggest a certain or-

dering of execution, we can compute all fix points simultaneously because all equations

are monotone. However, if executed sequentially (in the orderByPass, MayUse, Live) the

space used to holdByPassOut[n] andByPassIn[n] can be re-used to holdMayUseOut[n]

andMayUseIn[n] which in turn can be reused to holdLiveIn[n] andLiveOut[n]. For the

SPEC95 benchmarkgcc the total amount of memory needed to hold each of theByPass,

MayUse, andLive fields is about 600 kB. Re-using space will reduce memory require-
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ments and also improve memory locality. When comparing PhaseMayUsewith Phase

Live it becomes evident that the fixpoint forLiveOut[n] (resp.LiveIn[n]) must be a super-

set of the fixpoint forMayUseOut[n] (resp.MayUseIn[n]). Hence, it is safe to initialize

LiveIn[n] := MayUseIn[n] andLiveOut[n] := MayUseOut[n] thereby accelerating Phase

Liveby not having to start the fixpoint iteration from scratch.

Next we describe how to improve PhaseLive more drastically exploiting the follow-

ing observation. We focus on Out-sets here; In-sets are analogous. For a registerr at

noden of subroutinef , we have

r 2 LiveOut[n]) r 2MayUseOut[n] _ r 2 ByPassOut[n]

Conversely,

r 2MayUseOut[n]) r 2 LiveOut[n]

But r 2 ByPassOut[n] 6) r 2 LiveOut[n]. The latter does not hold because our initial

values forByPassOutof theexit nodes were pessimistic; we essentially assumed that all

registers could be live. During PhaseLive it might turn out that not all registers are live

at someexit nodes. The correct condition is therefore

r 2 ByPassOut[n] ^ r 2 LiveOut[ExitNode[ f ]]) r 2 LiveOut[n] (3.1)

This suggests the following alternative approach for PhaseLive, which has the benefit

of iterating only over theexit nodes of the intraprocedural control flow graph.

(1) FOREACH n2Nodes DO

(2) LiveOut[n]:= MayUseOut[n]

(3) LiveIn[n] := MayUseIn[n]

(4) REPEAT

(5) changed := false



55

(6) FOREACH f2Function DO

(7) new_out :=
S

s2Succ[ExitNode[f]] : LiveIn[s]

(8) IF new_out 6= LiveOut[ExitNode[f]] THEN

(9) changed := true

(10) LiveOut[exit[f]] := new_out

(11) FOREACH n2Nodes[f] DO

(12) LiveOut[n]:= MayUseOut[n][(ByPass[n]\new_out)

(13) LiveIn[n] := MayUseIn[n] [(ByPass[n]\new_out)

(14) UNTIL :changed

We begin by setting the start values for the fixpoint iterations using the improvement

mentioned above (Lines 1 through 3). Then, we recompute the liveness information at

the exit nodes for all functions until there is no change (Lines 4-14). If the liveness

information at anexit node has changed we propagate this change according to (3.1) to

all nodes of this subroutine (Lines 11 through 13). Note that it suffices to propagate this

information toreturnnodes only.

LiveOutandMayUseOut(resp.LiveIn andMayUseIn) need not be kept in separate

locations; they can be merged into one, i.e., all occurrences ofLiveOut (resp. LiveIn)

can be replaced byMayUseOut(resp. MayUseIn) which will then contain the liveness

information upon completion of the fixpoint iteration. This also renders the first three

lines of the algorithm unnecessary.

Since PhaseLive is usually the costliest of the three, this improvement cuts down

execution time by 25%. (cf. Section 3.1.2.5 for experiments results). The drawbackis

that space usage almost doubles because bothByPassandMayUseinformation have to

be kept around for each node (assumingLive information has been merged withMayUse
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information).

The enhancement is also applicable to ordinary interprocedural liveness analyses of

variables.

3.1.2.4 Control Flow Anomalies

Control flow anomalies as described in Section 2.1.4 are automatically handled byasso-

ciating worst case assumptions withunknownnodeandunknownfunas shown below and

relying on the presence of compensation edges.

ByPassOut[unknownnode] := R LiveOut[unknownnode] := R

ByPassIn[unknownnode] := R LiveIn[unknownnode] := R

MayUseOut[unknownnode] := R MayUse[unknown f un] := R

MayUseIn[unknownnode] := R ByPass[unknown f un] := R

3.1.2.5 Implementation and Performance of the Liveness Analyses

We have implemented the context sensitive and context insensitive liveness analysis al-

gorithms withinAlto. Besides the speed of the analysis, space consumption was of

primary concern to us. We found that it is usually better to recompute a data item than to

store it. Thus,Alto only stores the variousOut-sets associated with a node. TheIn-sets

are computed by traversing the instructions of a basic block backwards.2 Thedef and

usesets are not needed at all.

The relatively small number of instructions in a typical node make this approach

viable. We also do not maintain a worklist of those nodes that need to be reconsidered

during the fixed point iteration because this would incur the cost of at least one more

pointer per node. Instead, we mark those nodes which need recomputation and iterate

2Alternatively, we could keep theIN-sets and recompute theOut-sets from the successor nodes. How-
ever, when an optimization needs to determine which registers are live at a point within a node, it is more
convenient to have theOut-sets readily available.
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over all nodes, processing marked nodes until no marked ones are left.

The total space requirement for the context insensitive liveness analysis is 64bits per

node to hold theLiveOut information. (1 bit for each of the 64 registers of the Alpha

CPU). For the context sensitive analysis running the three phases sequentially weneed

an additional 128 bits per function to hold theByPassandMayUsesummary information

simultaneously. For the improved version of the context sensitive analysis described in

the previous section, we need an additional 64 bits per node because we need to access

MayUseOutandByPassOutsimultaneously.

Our experiments are based on the SPECint95 benchmark suite. Figure 2.1 summa-

rizes their basic characteristics.

Figure 3.1 shows our experimental results for the liveness analyses. The measure-

ments were obtained on our reference machine (cf. Section 4.1). Besides time and space

usage, we also measured the precision. For the improved context sensitive analysis, the

space and time requirements are given in square brackets (the precision isnot affected).

The precision is computed as the average number of dead integer registers afterall in-

structions, i.e., the number of integer registers not live averaged over all program points.

The last column contains the difference in precision between the context sensitive

and insensitive analysis.
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Benchmark Context Insensitive Context Sensitive [improved] ∆

Sp. (kB) Ti. (sec) Prec. Space (kB) Time (sec) Prec. Prec.

compress 39 0.05 4.9 42 [81] 0.15 [0.10] 6.6 1.7

gcc 605 1.30 4.2 638 [1244] 3.75 [3.00] 6.6 2.5

go 122 0.20 5.9 132 [254] 0.55 [0.40] 11.5 5.7

ijpeg 90 0.15 4.6 100 [190] 0.40 [0.30] 5.4 0.8

li 71 0.10 3.7 81 [152] 0.30 [0.20] 5.4 1.8

m88ksim 89 0.15 4.9 97 [187] 0.35 [0.25] 7.1 2.3

perl 177 0.30 4.3 186 [363] 0.85 [0.65] 6.2 1.9

vortex 222 0.45 5.3 238 [460] 1.30 [1.00] 8.6 3.3

Table 3.1: Performance of liveness analysis

The context sensitive analysis typically finds two additional dead integer registers

per node over the insensitive analysis and takes roughly three times as long to compute.

Our improvement to the context sensitive analysis speeds the computation up by approx-

imately 25% at the cost of a roughly twice the memory usage.

The number of available dead register suggest that usually there are plenty of scratch

registers available for program transformation such as the insertion of instrumentation

code.

3.1.3 Improving the Precision of Register Liveness Analysis

This section explores how the precision of liveness analysis can be improved. An ob-

vious source for improvement is our overly pessimistic treatment ofunknownnodeand

unknownfun. This will be exploited in 3.1.3.2. Section 3.1.3.1 shows how some registers
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which the analysis correctly identified as live can nevertheless be regarded as dead in

some contexts.

3.1.3.1 Callee Save Registers

As described by Goodwin in [36], information about callee save registers can beex-

ploited to reduce the number of live registers. LetSaved[ f ] denoted the registers which

are saved and restored byf and which are otherwise not used before defined inf .3

Saved[ f ] will be a subset ofMayUse[ f ] because the saving of a register at function entry

will be regarded as a use of that register by the liveness analysis. However, this use is

only relevant if the register is live at the return node of a given call site.

Hence we can removeSaved[ f ] from MayUse[ f ] and instead add it toByPass[ f ]

without affecting safety. The following slight modification of the equations updating the

summary information in PhaseByPassandMayUseachieves the desired effect.

ByPass[ f ] = ByPassIn[InitNode[ f ]][Saved[ f ] f 2 Functions

MayUse[ f ] = MayUseIn[InitNode[ f ]]�Saved[ f ] f 2 Functions
In order to get a better insight into how this optimization opportunity arises and how

it may be generalized we consider the following (hypothetical) code for complex addition

and two of its call sites.4.
3As described in the next section we cannot rely on the calling conventions when determiningSaved[ f ]

but need to inspectf
4The meaning of the Alpha machine instructions is explained in Appendix A
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ComplexAdd:

addq r10, r12, r0

addq r11, r13, r1

ret ra

Callsite2:

...

bsr ra, ComplexAdd

mulq r0, r0, r0

mulq r1, r1, r1

addq r0, r1, r0

...

ret ra

Callsite1:

...

ldq r10, 0(r20)

ldq r11, 8(r20)

ldq r12, 0(r21)

ldq r13, 8(r21)

bsr ra, ComplexAdd

move r0, r10

bsr ra, PrintNumber

...

ret ra

Figure 3.3: Code example: addition of complex numbers

For ComplexAdd the real and imaginary part of the first summand is passed in

registersr10 andr11, the real and imaginary part of the second summand in registers

r12 andr13, and the result is returned inr0 andr1. Callsite1 just prints out the real

part of the result, whileCallsite2 computes its squared norm.

Clearly, registersr10 throughr13 will be live at both call sites just before the call to

ComplexAdd. But Callsite1 only uses the real part of the result hence the result

computed by the second add inComplexAdd is useless. A lazy programming language

would neither execute this add instruction nor the instructions computing the values of

registersr11 andr13. Unfortunately, we cannot eliminate theaddq instruction since

Callsite2 uses both resultsr0 and r1. But sincer1 is dead inCallsite1 we
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can consider registersr11 andr13 to be dead as well and subsequently eliminate the

corresponding load instructions. Registersr11 andr13 will then have arbitrary values

and the add instruction produces an arbitrary result which is ignored5

In this light the callee save registers can be regarded as an additional argumentas

and resultrs of the function f . (s, as, andrs will of course denote the same register.)

as will be moved to a new location and then from there tors. If rs is not live at a given

return node the move operations are useless. But as above we cannot delete them. All

we can do is markas as dead at the corresponding call node and this is exactly what is

achieved by movings from MayUse[ f ] to ByPass[ f ].

3.1.3.2 Calling Conventions

Suppose functionf does not use or define registerr and does not call any other function.

Our liveness analysis will determine thatr 2 ByPass[ f ]. Now assume thatf and any

function calling f obey some sort of calling convention which state that registerr is not

preserved across procedure calls and does not carry a result. This implies that r will not

be live at any return node of a call site off and it is therefore safe to remover from any

ByPass[ f ]. In fact, it is irrelevant whetherr is in ByPass[ f ] or not. The smallerByPassset

is nevertheless desirable, becauseunknownnodeor unknownfunmay introduce unwanted

liveness information into the analysis which would be partially eliminatedby the smaller

set. Unfortunately, we have no control over the enforcement of calling conventions in

general, except for system calls. In fact, compilers often violate calling convention when

they perform interprocedural register allocation or when library functions areinvoked

that implement missing hardware features such as a divide instruction. It seems reason-

able, however, to assume that calls to shared libraries and calls throughfunction pointers

respect the calling convention.

5If addq could cause a side effect such as an overflow this approach is of course not valid.
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In our current version of the liveness analysis those calls are modeled by a call to

unknownfun. An enhancement would be to model this as a call to a different function

sysfun(or a special nodesysnodefor a context insensitive analysis).6

Let sysusedenote the set of registers potentially used according to the calling con-

ventions andsyssavethe set of registers preserved across function calls. The liveness

analysis will be augmented with the following assignments.

ByPassOut[sysnode] := syssave LiveOut[sysnode] := sysuse[syssave

ByPassIn[sysnode] := syssave LiveIn[sysnode] := sysuse[syssave

MayUseOut[sysnode] := sysuse MayUse[sysfun] := sysuse

MayUseIn[sysnode] := sysuse ByPass[sysfun] := syssave

3.1.3.3 Performance

We have added the enhancements described in the previous sections to the context sensi-

tive analysis and measured the resulting gain in precision. Figure 3.4 shows theaverage

number of dead integer registers after all instructions without any enhancement,with one

of the enhancements, and with both enhancements.

Our experiments show that incorporating both enhancements increases the number of

dead registers by as much as 10. Most of the improvement is due to the calling conven-

tion enhancement. The reason for this lies with a mechanism related to the Cstandard

library functionatexit(). This function lets the programmer register other function

which are called upon termination of the program, i.e., typically after returnfrom func-

tion main(), using function pointers. Without the calling convention enhancement the

function pointer invocation will cause all register to be live at the end ofmain() and

this will propagate backwards into most other subroutines.

6If the calling conventions for system calls differ from those for regular functions, as it is the case for
Digital Unix/Alpha, we introduce one function/node for each calling convention
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Benchmark None Save Call. Conv. Both Both - None

compress 6.6 6.8 16.5 17.1 10.5

gcc 6.6 7.2 11.2 12.1 5.4

go 11.5 11.7 16.8 17.1 5.5

ijpeg 5.4 5.5 15.5 15.7 10.3

li 5.4 5.8 15.3 15.7 10.3

m88ksim 7.1 7.4 16.5 17.4 10.2

perl 6.2 6.4 15.4 15.9 9.7

vortex 8.6 9.2 15.7 17.0 8.4

Figure 3.4: Impact of enhancements to liveness analysis

3.2 Register Use-Def Chains

Register use-def chains provide, for each use of a register, a pointer to its definition.

A use of a register occurs when an instruction uses a register as its operand, i.e., reads

that register. A definition of a register is an instruction that defines (writes) a register.

The use-def chains are a directed graph whose nodes are instructions and whose edges

are use-def pointers. In order to preserve space we only allow for one pointer per use. If

there are several definitions of a register reaching a use as depicted on the left hand side in

Figure 3.5 for registerr0 we introduce a pseudo instruction at an appropriate place which

also defines that register, thereby shadowing the other definitions. The pseudo instruction

does not use any register. The resulting data structure will be cycle free because

� All registers must be defined before they are used (enforced by inserting pseudo

instructions at allinit nodes).
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� All code is reachable (enforced by removing unreachable code).

� No use has more than one definition (enforced by pseudo instructions).

move 5,r0 move 0,r0

add r0,r1,r3

pseudo-def r0

move 5,r0

add r0,r1,r3

move 0,r0

Figure 3.5: Introduction of pseudo definitions

This is analogous toφ functions used with the static single assignment (SSA) form [25].

Use-def chains simplify the implementation of optimizations such as common subex-

pression elimination and analyses such as alias analysis (cf. Section 3.3).

3.2.1 Algorithm

The difficult aspect of use-def chains is to determine where to insert pseudo instructions.

The algorithm proposed in [25] uses sophisticated data structures such as dominator

frontiers which are efficient but quite memory intensive. Our implementation takes a

different route and uses a somewhat less time but more memory efficient algorithm based

on and idea by Shapiro [63, 51].

Our approach treats each registerr separately. An intraprocedural forward data flow

analysis propagates definitions of the register to its uses. If several definitions reach

a use we have not yet inserted enough pseudo instructions defining that register. We

insert pseudo instructions at appropriate confluence points and then restart the algorithm.

Originally there is only one pseudo instruction forr at theinit node of each subroutine.
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More formally, we use a forward data flow analysis on the lattice depicted below.

The meet operator iŝ.

?

def1 � � � defn

>

�

�

@

@

@

@

�

�

wheredefi denotes an instruction or pseudo instruction definingr.

Phase 1:For each subroutinef iteratively compute the fixpoint of the data flow equations

listed below.

Out[n] = IF def[n] =? THEN In[n] ELSEdef[n] ENDIF n2 Nodes[ f ]

In[n] =

V

p2Pred[n]Out[p] n2 Nodes[ f ]
Subject to the initial values

In[n] :=? n2 Nodes[ f ]

Out[n] :=? n2 Nodes[ f ]

def[n] := last definition of registerr in n or? otherwise n2 Nodes[ f ]

After the fixpoint computationOut[n] 6=? andIn[n] 6=? holds for alln2Nodes[ f ]n

InitNode[ f ].

Phase 2:Determine confluence points and insert pseudo instructions.

Insert pseudo definitions in those nodesn that do not have one already and that have at

least one predecessor that does not propagate> into n.

(1) FOREACH n2Nodes[f] DO

(2) IF In[n]6= > THEN CONTINUE ENDIF

(3) IF n has pseudo instruction THEN CONTINUE ENDIF

(4) FOREACH p2Pred[n] DO

(5) IF Out[p] 6= > THEN
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(6) fPrepend pseudo instruction to ng

(7) BREAK;

(8) ENDIF

(9) ENDFOR

(10) ENDFOR

Phase 3:Repeat steps 1 and 2 until no more pseudo instructions are added.

Eventually all nodesn with In[n] = > should contain a pseudo instruction at the begin-

ning. This means that from a data flow point of view> is prevented from reaching any

”use” of the registerr and all the pointers will point to a valid definition.

Phase 4:PropagateIn[n] to all the uses withinn.

(1) FOREACH n2Nodes[f] DO

(2) def := In[n]

(3) ITERATE i FORWARD THROUGH Instructions[n]

(4) fif i uses r set use-def-pointers to defg

(5) IF fi defines rg THEN

(6) def := i

(7) ENDIF

(8) ENDITERATE

(9) ENDFOR

3.2.2 Performance

The space requirements for the analysis is very moderate and consists of one word (4

byte) per basic blockn to hold In[n] and another word to holddef[n]. Out[n] is dynam-

ically computed fromIn[n] anddef[n] and not explicitly stored. We also maintain a bit
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vector (64 bits) per node that describes for which of the 64 registers pseudo instructions

were prepended to the node. This keeps us from having to actually insert the pseudo

instructions. The total space requirements for each SPECint95 benchmark is shown in

column 2 in Table 3.2. It also give the execution time on our reference machine (cf.

Section 4.1) in column 3. Column 4 contains the number of pseudo definitions generated

and column 5 the total number of instructions for comparison.

Benchmark Space (kB) Time (sec) #pseudo Defs. # Instructions

compress 39 0.15 2818 18759

gcc 605 3.75 47754 295096

go 122 0.55 8357 71721

ijpeg 90 0.40 7947 54611

li 71 0.30 6513 34768

m88ksim 89 0.35 6179 46117

perl 177 0.85 15055 90318

vortex 222 1.30 19529 127383

Table 3.2: Performance of use-def chains

3.3 Register Alias Analysis

The problem of alias analysis or memory disambiguation at the machine code level is

to determine the relationship of two memory regions, i.e., whether they are identical,

disjoint, or intersecting. As a possible result we also allow the conservative estimate that

nothing is known about the relationship of the two regions. The regions are typically

identified with an instruction, e.g., the store instructionstq r3,8(r11) describes the

region pointed to byr11 with an 8 byte offset. The region is one quadword (or 8 bytes)
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wide.

Memory disambiguation is one of the weak points of object code modification be-

cause lots of the high level information available in an ordinary compiler, such astypes,

that would be greatly beneficial is unavailable. Various alias analyses have been imple-

mented and tried withinAlto. An early version is described in [28]. Here we describe

only the current implementation.

3.3.1 Alias Analysis by Inspection

The current version of alias analysis is essentially an analysis by inspection, i.e., we try

to derive a symbolic description for each of the memory regions and then compare these

descriptions. A few short cuts from this general approach are taken when possible.

Stack pointer vs. other register: If one memory region is a stack location and the

containing function does not make use of references into the stack, then this region can

never intersect with a non-stack region.

Stack pointer vs. known address:If one memory region is a stack location and the

other region lies inside the Text, Data, or BSS Segment, then the regions must be disjoint.

General case:In the general case we employ the use-def chains form Section 3.2 for

our analysis. We describe our algorithm by the example given in Figure 3.6. We are

interested in the relationship of the memory region accessed by the last two instructions

(labeled 44 and 45).

The algorithm tries to symbolically express the start address of a region by tracing

the use-def chains, which are depicted as arrows (some use-def relationshipsare omitted

to avoid clutter).

We start with 8+ r1143, the region accessed by instruction 44. The subscript 43 for

r11 means that it was defined at point 43. Since the instruction at point 43 has outgoing

edges we can symbolically expand this to 8+ r541+ r116. 41 is merely a pseudo defi-
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nition and hence we are not able to expandr541 any further. Butr116 can be expanded

and we obtain 136+ r541+ r015. No further expansion are possible. Analogously, pro-

cessing the region accessed by instruction 12 yields 16+ r541+ r015. The two regions

only differ in their constant term and so we conclude that the regions must be disjoint.

If the regions had differed in any other term but the constant term the relationship of the

memory regions would have been conservatively estimated as unknown.

21: addq r5,16,r5 31: addq r5,24,r5

41: pseudo-def r5

11: pseudo-def r3
12: pseudo-def r4
13: pseudo-def r5
14: pseudo-def r7

17: bne r7

16: addq r0,128,r1

15: ldq  r0,4(r4)

42: addq r0,r5,r10

43: addq r1,r5,r11

44: stq  r3,8(r11)

45: ldq  r2,16(r10)

Figure 3.6: Example for alias analysis
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CHAPTER 4

OPTIMIZATIONS

This chapter describes the implementation and experimental results of an optimizer

based onAlto. The overall structure of the optimizer consists of five phases and is

depicted in Figure 4.1.

Base Optimizations. After reading in the executable and transforming it into an inter-

mediate form a series of base optimization is performed. These include most of

the classical compiler optimizations such as constant folding, unreachable code

elimination, copy propagation, etc. These optimization are iterated until either a

fixpoint is reached or a maximum iteration count is exceeded. A second round of

base optimizations is performed just before code positioning.

One-time Optimizations. This phase performs optimizations that should only be done

once. There are three reasons for performing certain optimizations only once: (1)

The optimization may require costly analyses (e.g., common case specialization);

(2) Repetition of the optimization might have undesirable side effects (e.g., stack

explosion for repeated inlining with stack merging); (3) Repeating the optimization

will not give any additional benefit.

Code Positioning. After all optimizations have been executed, the interprocedural con-

trol flow graph is arranged into a linear sequence of nodes. Unconditional branches

which were eliminated when the intermediate form was created are reintroduced
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where necessary. Code positioning is intended to improve instruction cache hit

rates and reduce the (dynamic) number of (taken) branches.

Scheduling. Scheduling reorders the instructions inside a node in order to improve the

performance of a pipelined CPU. Our scheduler is a slight extensions of a regular

list scheduler and allows instructions to move into other nodes if this preservers

correctness of the program.

Base Optimizations

Base Optimizations

Constant Propagation
Constant Folding
Strength Reduction

Block Fusion
Nop Removal
Constant Generation
Conditional Move Introd.
Reload Avoidance
Move Elimination
Peephole
Unreachable Code Rem.
Dead Code Removal

Code Positioning

Scheduling

One-time Optimizations

Analyses

Register Liveness
Use-Def Chains

Register Aliasing

Inlining

Specialization
Common Case
Stack Merging

Code Motion

Copy Propagation
...

Figure 4.1: Phases of the optimizer based onAlto

The optimizations are supported by the analyses described in the previous chapter.

4.1 Experimental Setup

The following sections describe the most relevant optimizations performed by the opti-

mizer and evaluates their effectiveness on the SPECint95 benchmark suite[65]. Unless
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otherwise noted, the benchmarks were compiled with the DEC C compiler V5.2-036

invoked ascc -O4, with additional linker options (-d -z -r -non shared ) to

retain relocation information and produce statically linked executables.1 By default the

optimizer uses execution frequency profiles obtained with the training input for these

benchmarks. The execution times reported were generated using the referenceinputs.

The timings were obtained on a lightly loaded DEC Alpha workstation with a 300 MHz

Alpha 21164 (EV5) processor with a split primary cache (8 kB each of instruction and

data cache), 96 kB of on-chip secondary cache, 2 MB of off-chip backup cache, and 512

MB of main memory, running Digital Unix/Alpha V4.0B (Rev. 564). In each case, the

execution time reported is the smallest time of 10 runs.

4.2 Optimization of Constant Expressions

4.2.1 Interprocedural Constant Propagation, Constant Folding, and Strength Re-

duction

There are generally more opportunities for interprocedural constant propagation at (or

after) link time than at compile time. There are three reasons for this:

1. The entire program, including all the library routines and an eventual runtime sys-

tem, is available for inspection. Constants can be propagated across compilation

unit boundaries and even source language boundaries.

2. Global data structures and subroutines have been placed within the programs ad-

dress space by the linker. Hence their addresses are known constants at link time

but unknown constants at compile time.

1We use statically linked executables becauseAlto relies on the presence of relocation information
for the control flow graph construction. The Digital Unix/Alpha linker ld refuses to retain relocation
information for non-statically-linked executables.
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3. At link time some architecture-specific computations become available foropti-

mization which are not visible at the intermediate code representation level typ-

ically used by compilers. An example of this case is the computation of thegp

register on the Alpha processor: the value of this register is generally recomputed

in the init node of a subroutinef as well as inreturn nodes following subroutine

calls to ensure that it always carries the same value while code inf is executed

[22]. In many cases, however, the recomputation is unnecessary and can be elimi-

nated by propagating the value of thegp register through a program. It should be

noted that this optimization cannot be carried out at compile time since the value

of gp is only determined at link time.

The analysis used is based on the standard iterative constant propagation algorithm

[2], limited to registers but carried out across the entire interprocedural control flow

graph. This has the effect of communicating information about constant arguments

passed in registers from a call site to the callee. To improve precision, we determine

(by inspection) the registers saved on entry to a subroutine and restored at the exit from

it: if a registerr that is saved and restored by a subroutine in this manner contains a

constantc just before the subroutine is called, thenr is inferred to contain the valuec

on return from the call.2 Our constant propagation is interprocedural and flow sensitive

[52]. It is not context sensitive since data flow information from different call sites is not

distinguished while being propagated through a subroutine. Context sensitive would re-

quire some notion of jump function [24] which would use up too much memory. Unlike

[13] our analysis does not sacrifice precision in the presence of recursion, though. Simi-

lar to [76] our analysis is extended with the interpretation of conditionals. If a conditional

2Unfortunately, we cannot rely on the calling conventions being observed:hand-written assembly
code in libraries does not always obey such conventions, and compilers may ignore them when doing
interprocedural register allocation.
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tests whether a register is equal to a constant, the constant will be propagated through the

correct branch of the conditional. This simplifies the implementation of common case

specialization (cf. Chapter 5).

As usual, constant propagation is interleaved with constant folding. The constant

folder uses direct execution to compute the effect of the various opcodes (cf. Section

4.2.4).

It is noteworthy that even some load instructions can be “folded”. If we know the

memory address an instruction loads from and this location belongs to a read-only section

of the address space we can fetch the loaded value from the original executable.

Constant propagation is also interleaved with strength reduction. This might seem

unnecessary at first, but strength reduction might change the control flow graph and hence

might help in finding more constants. For example, after a subroutine start address has

been propagated to an indirect call instruction (jsr), the callee becomes known and we

no longer have to make worst case assumptions about it.3

3Due to some architectural peculiarities on the Alpha, initially most callsappear to be indirect calls
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Program Evaluable/All Evaluated/All Evaluated/Evaluable

compress 0.692 0.129 0.186

gcc 0.711 0.143 0.201

go 0.744 0.222 0.298

ijpeg 0.720 0.103 0.143

li 0.684 0.153 0.224

m88ksim 0.702 0.180 0.256

perl 0.715 0.167 0.234

vortex 0.700 0.241 0.344

Geom. Mean 0.708 0.162 0.228

Table 4.1: Effectiveness of Constant Propagation

The results of constant propagation are shown in Table 4.1. Column 2 lists the static

number of instruction that produce a result (evaluableinstructions) divided by all instruc-

tions. An example of an instructions that does not produce a result (non-evaluable) is a

store instruction. Column 3 lists the static number of instructions whose result could be

determined by Constant Propagation (evaluatedinstructions) divided by all instructions.

Column 4 has the ratio of the previous columns.

The numbers were obtained after the second run of Constant Propagation during the

base optimizations. This allows other optimizations, especially unreachablecode elim-

ination (cf. Section 4.3.4), to execute once, and hence makes the numbers more mean-

ingful than the ones obtained after the first run. It can be seen that, on the average, it is

possible to evaluate about 16% of the instructions of a program at link time. However,

this does not mean that 16% of the instructions in a program can be eliminated. Some
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of them may have side effects, such as control transfers, and so elimination is not pos-

sible. To eliminate others we would have to propagate the constant to all its uses and

transform them into immediate operands there. On the Alpha this is only possible for

small (8 bit) constants. Section 4.2.3 describes optimizations along this line. Often it

is possible, though, to transform an instruction computing or loading a constant into a

cheaper instruction (or instruction sequence) computing the same constant (cf. Section

4.2.2).

Program with opt.(sec) without opt.(sec) with/without

compress 259.8 277.3 0.937

gcc 232.9 258.3 0.902

go 304.0 323.8 0.939

ijpeg 328.1 330.9 0.992

li 254.6 295.0 0.863

m88ksim 224.2 279.4 0.802

perl 182.0 220.5 0.825

vortex 316.4 444.4 0.712

Geometric Mean: 0.867

Table 4.2: Execution time impact of constant propagation

As shown in Table 4.2, this analysis has a profound impact on the performance of the

generated code. For example, the SPECint95 benchmarksli, m88ksim, perl, and

vortex suffer slowdowns of 15–30% when this analysis is turned off. The reason for

this impact, in great part, is that many analyses and transformations relyon the knowl-

edge of constant addresses computed in the program. For example, the code generated
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by the compiler for a function call typically first loads the address of the calledfunction

into a register, then uses ajsr instruction to jump indirectly through that register. If

constant propagation can be used to determine that the address being loaded is a fixed

value, and the callee is not too far away, the indirect function call can be replaced by a

direct call using absr instruction (this is a form of strength reduction): this is not only

cheaper, but also vital for the construction of the interprocedural control flow graphof

the program and for other optimizations such as inlining. Another example of the use

of constant address information involves the identification of possible targets ofindirect

jumps through jump tables: unless this can be done, an indirect jump must be assumed

as being capable of jumping to any node in the interprocedural control flow graph,4

which can significantly hamper optimizations. Finally, knowledge of constant addresses

is useful for alias analysis and the optimizations it enables, e.g., load and storeavoidance.

4.2.2 Constant Generation

As described in the previous section it is often possible to determine, from constant prop-

agation/folding, that a value being computed or loaded into a register is a constant. In

such a situation the optimizer attempts to find a cheaper instruction to computethe same

constant into that register. (This optimization could be generalized to cheapinstruction

sequences to replace high latency operations, such as integer multiplication.) The sim-

plest case of this optimization involves computing the values of constants using specific

registers whose values are known at each program point, namely, registerr31, whose

value is always 0, and the global pointer registergp, whose value at any program point

is known at link time. If the (signed) constantk can be represented with 16 bits, the

instruction to compute that constant into a registerr is replaced by the instruction5 ‘lda

4More precisely, any basic block that is marked as “relocatable”. This is abstracted astheunknownnode
(cf. Section 2.1.3).

5The meaning of the Alpha machine instructions is explained in Appendix A
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r, k(r31)’. Similarly, if the difference between the constantk and the value of thegp

register is representable as a signed 16 bit integer, we can do the same thing using gp as

the base register. The basic optimization is described by Srivastava and Wall [68]; here

it is generalized so that a constant can be computed from a known value in any register,

not justr31 orgp. Furthermore, we are not limited to address constants.

Care must be taken to ensure that the constants involved are notcode addresses, i.e.

addresses pointing into code bearing parts of the Text Segment. Since our optimizations

change the code, code addresses will change as well. Such constants are therefore ex-

cluded from this optimization. Other addresses, like data addresses, cause noproblems,

since the transformations implemented within our optimizer will leave themunchanged.

To find out whether a constant might be a code address we use information from the Pro-

gram Header. describing the structure of the segments , their start addresses, and their

length. The answer will naturally be conservative, but so far we have found very few

false positives in our benchmarks.

(1) ldq r1, 16(gp) (1) ldq r1, 16(gp) (1) ldq r1, 16(gp)

(2) ldq r2, 96(gp) (20

) lda r2, 8(r1) [(20

) lda r2, 8(r1)]

(3) ldq r3, 32(gp) (30

) lda r3, 16(r1) [(30

) lda r3, 16(r1)]

(4) ldq r4, 0(r1) (4) ldq r4, 0(r1) (4) ldq r4, 0(r1)

(5) ldq r5, 0(r2) (5) ldq r5, 0(r2) (50

) ldq r5, 8(r1)

(6) addq r4, r5,r6 (6) addq r4, r5, r6 (6) addq r4, r5, r6

(7) stq r6, 0(r3) (7) stq r6, 0(r3) (70

) stq r6, 16(r1)

(a) original code (b) after const. gen. opt. (c) after const. usa. opt.

Figure 4.2: Code generated fora= b+c
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As an example of this optimization, consider the C statement “a = b + c;”,

where a, b and c are global (64 bit) variables of typelong, with addresses

0x1400021558, 0x1400021560, and 0x1400021568. Figure 4.2 (a) shows the code gen-

erated for this statement by the compiler. Instructions(1)� (3) load the addresses of

the variables from the global address table, using the global pointer register,gp, to index

into this table. Instructions(4)� (7) implement the actual addition. The optimizer is

able to determine the addresses loaded into registersr1, r2 andr3, sincegp is constant

within each subroutine and the global address table, it is pointing to, is a read-only area

of memory. This allows constant value optimization of instructions (2) and (3), which

replaces the address loads with cheaperlda instructions as shown in Figure 4.2 (b).

Further optimizations are possible as described in the next section.

Program with opt.(sec) without opt.(sec) with/without

compress 259.8 278.4 0.933

gcc 232.9 239.2 0.974

go 304.0 308.7 0.985

ijpeg 328.1 327.6 1.001

li 254.6 271.3 0.939

m88ksim 224.2 248.2 0.903

perl 182.0 197.1 0.923

vortex 316.4 345.2 0.916

Geometric Mean: 0.946

Table 4.3: Execution time impact of constant generation

The performance impact of this optimization is illustrated in Table 4.3. The programs
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that benefit the most from this optimization arecompress, li, m88ksim, perl, and

vortex, with improvements around 7%.

4.2.3 Constant Usage

Besides the generation of constants as results, we also attempt to optimizethe use of

constants as operands. Some Alpha instructions allow the use of a small immediate

value in place of the second operand register. We exploit this feature whenever possible.

If only the first operand register is determined to be constant, we try to swapthe operands

of the instruction. This is trivial if the instruction is commutative in its operands. If the

instruction is not commutative, like a subtract instruction, we have two options. We can

swap the operands and change the instruction opcode, i.e., we change the instruction

which subtracts the second operand from the first to an instruction which subtracts the

first operand from the second (reverse subtract). If this is not possible becausesuch an

instruction does not exist, we can still swap the operands but now we have to account

for the fact that the instruction produces a different result. For example, in thecase of a

subtract instruction it produces the negative of the original value, and we must modify

all uses of the result accordingly.

The optimizer also exploits the signed 16bit offsets in load and store instructionsto

make changes of the base register possible. The transition from Figure 4.2 (b) to (c)

shows an example of this transformation. Instructions (5) and (7) are modified to use r1

as the new base register. This is compensated for by changing the offsets to makeup for

the difference in value between the original and the new base register. Note that registers

r2 andr3 are no longer used in this code and will subsequently be deleted. Also note that

this transformation might create internal pointers or hide other pointers and thus might

conflict with a conservative garbage collector as described in [10]. It should therefore be

turned off for those applications.
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Program with opt.(sec) without opt.(sec) with/without

compress 259.8 260.1 0.999

gcc 232.9 236.9 0.983

go 304.0 303.9 1.000

ijpeg 328.1 329.4 0.996

li 254.6 255.4 0.997

m88ksim 224.2 226.8 0.989

perl 182.0 183.4 0.992

vortex 316.4 318.2 0.994

Geometric Mean: 0.994

Table 4.4: Execution time impact of constant usage

The performance impact of this optimization is illustrated in Table 4.4. The program

that benefits the most from this optimization isgcc with a 1.7% improvement. For other

programs the speedup is marginal.

4.2.4 Direct Execution

Constant folding is a difficult business. It requires us to provide an emulator for either

an abstract machine (for constant folding in an ordinary compiler) or a concrete machine

(for constant folding in a link time optimizer). Either way, emulating elementary oper-

ations using a high level language is very tedious and error prone. Often the high level

language does not have equivalent operators for machine instructions, like a bitwise ro-

tate instruction, and we need to resort to simpler bit manipulation operations provided

by the language to emulate the rotate. Sometimes a language operator differs in subtle
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ways from the equivalent operator provided by the machine or is unspecified, e.g., divide

and modulo operations with negative operands. In the case of floating point operation

the outcome is usually not even exactly defined, because only a certain number of digits

are guaranteed to be accurate.

The constant folding portion ofgcc, for example, consists of almost 5000 lines

(150kB) of C source code6.

In our implementation we have chosen a different route, and resorted to directexe-

cution for constant folding [23]. In order to determine the result of anaddq operation

on two known values we actually execute anaddq instructions. This guarantees perfect

emulation of the machine behavior. It also requires very little programming effort (less

than 100 lines) and is very fast. Of course, we have now made the optimizer quitenon-

portable but since there are other sources of non-portability this is only a minor sacrifice.

Our first implementation of the constant folder created a little subroutine each time

we needed to fold a constant, i.e., at runtime. In case of the example above, the routine

would consist of anaddq and aret instruction. The operand and destination registers

of theaddq instruction were chosen to mimic the calling conventions, so that the rou-

tine could be invoked from C using function pointers. Since we were reusing the same

memory area for the little routine we had to make sure that the CPU would always “see”

the latest snapshot. This was accomplished by invalidating the instruction cache before

invoking the routine. This worked fine under Digital Unix/Alpha but caused problems

under Linux/Alpha.

The most recent implementation avoids the instruction cache invalidation by gener-

ating a subroutine for each possible opcode once at the initialization of the optimizer.

Certain opcodes are excluded from direct execution, because they might raise excep-

tions (e.g., integer arithmetic instructions that trap on overflow), for other opcodes we

6file fold-const.c of gcc version 2.5.3
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make sure that the arguments are valid, e.g., we do not execute floating point operations

if one of the operands is anot-a-number value(NaN), like positive infinity.

4.3 Instruction Elimination

4.3.1 Useless Instruction Elimination

Our implementation of useless instruction elimination (also referred to as dead code elim-

ination [2]) is solely based on register liveness information. If an instruction computes

a value into registerr and on all execution paths this register is not used before it is

rewritten, we can in most cases eliminate the instruction. However, if the instruction has

side effects we need to be more careful, e.g., if an instruction changes the flowof control

besides computing a value, we cannot eliminate it. This rule has been relaxed for load

instructions which always have the side effect of possibly causing a segmentation fault.7

Because we restrict our liveness analysis to registers, we will not detect useless com-

putations whose value is stored into a memory cell from which it is never read.However,

the store avoidance optimization described in Section 4.3.3 will catch a few ofthese

cases.
7Curiously enough, this caused problems with an early version of Boehm’sconservative garbage col-

lector [10], which used a useless load instruction to probe for the boundaries of the address space.
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Program with opt.(sec) without opt.(sec) with/without

compress 259.8 262.9 0.988

gcc 232.9 241.1 0.966

go 304.0 309.4 0.982

ijpeg 328.1 329.5 0.996

li 254.6 265.1 0.960

m88ksim 224.2 238.8 0.939

perl 182.0 193.9 0.938

vortex 316.4 341.2 0.927

Geometric Mean: 0.962

Table 4.5: Execution time impact of useless instruction elimination

The performance impact of this optimization is illustrated in Table 4.5. The pro-

grams that benefit the most from this optimization aregcc, li, m88ksim, perl, and

vortex, with improvements around 5%.

4.3.2 Move Elimination

The aim of the move elimination optimization is identical to copy propagation, viz., we

try to reduce the number of move instructions. However, our optimization is moregeneral

and goal directed. The move elimination optimization examines each move instruction

of the program in turn and tries to eliminate it by register renaming. This is donelo-

cally within a basic block only, using register liveness information. Move elimination

considers three patterns:

1. move ra,rb => [move ra,ra]

... ...
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use rb => use ra

... ...

lastuse rb => use ra

In this pattern the last use of the target (rb) of the move instruction is in the same

basic block as the move instruction and the source (ra) of the move instruction is

still available at the last use of the target. Hence we can convert all uses of the

target into uses of the source and eliminate the move instruction. Note that thisis

the only pattern where copy propagation would yield the same effect. Patterns 2

and 3 cannot be handled by copy propagation.

This pattern will also work foraddq and similar instructions instead of move

instructions, if one of the operands is a constant and this constant can be combined

into the uses. For example:

addq ra,2,rb => [eliminated]

... ...

ldq rc,x(rb) => ldq rc,x+2(ra)

... ...

addq rb,6,rc => addq ra,8,rc

Note, that this extension might create internal pointers or hide other pointers and

thus might conflict with a conservative garbage collector as described in [10]. It

should therefore be turned off for those applications.

2. def ra => def rb

...

move ra,rb => [move rb,rb]

...
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lastuse ra => use rb

In this pattern the definition of the source of the move (ra) instruction and the last

use ofra are in the same basic block as the move instruction. The target (rb) of the

move instruction is not live between the definition and the move instruction. Also,

rb must still be available at the last use ofra. Hence we can convert all uses of the

target into uses of the source and eliminate the move instruction.

3. def ra => def rc

...

move ra,rb => [move rc,rc]

...

use rb => use rc

... ...

lastuse rb => use rc

...

lastuse ra => use rc

In this pattern the entire live range of the source (ra) and the target (rb) of the move

instruction are located in the same basic block. If we can find a scratch registerrc

which is available from the definition ofra to the end of both the live ranges ofra

andrb we can rename all uses and definitions ofra andrb into uses and definitions

of rc.



87

Program with opt.(sec) without opt.(sec) with/without

compress 259.8 261.2 0.995

gcc 232.9 237.6 0.980

go 304.0 306.0 0.993

ijpeg 328.1 329.3 0.996

li 254.6 256.3 0.993

m88ksim 224.2 227.1 0.987

perl 182.0 182.2 0.999

vortex 316.4 316.6 0.999

Geometric Mean: 0.993

Table 4.6: Execution time impact of move elimination

The performance impact of this optimization is illustrated in Table 4.4. The program

that benefits the most from this optimization isgcc with a 2.0% improvement. For other

programs the speedup is marginal

4.3.3 Load and Store Avoidance

It is sometimes possible to identify load and store operations as unnecessary.Suppose

that an instructionI1 stores a registerr1 to memory regionl (or loadsr1 from memory

regionl ), and is followed soon after by an instructionI2 that loads from locationl into

registerr2. If it can be verified that that locationl is not modified between these two

instructions, thenload avoidanceattempts to delete instructionI2 and replace it with

a register move fromr1 to r2. It may happen that registerr1 is overwritten between

instructionsI1 andI2: in this case, the optimizer tries to find a free registerr3 that can be

used to hold the value inr1. If the instructionI1 can now be shown to be dead, it can be
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deleted.

A similar optimization can be applied to two store instructionsI1 and I2 following

each other and accessing the same memory region. The first one is clearly useless and

can be deleted. Note that since our useless code elimination optimization focuses on

registers and ignores memory regions, it will not catch this case. We also employ a very

basic liveness analysis for stack locations to eliminate useless storesto the stack.

Optimization opportunities like the ones described above can be easily exploited by

a compiler. However, we encounter additional opportunities at link time for a variety of

reasons: a variable may not have been kept in a register by the compiler becauseit is

a global, or because the compiler was unable to resolve aliasing adequately, or because

there were not enough free registers available to the compiler. At link time, accesses

to globals from different modules become evident, making it possible to keep them in

registers [74]. Inlining across module boundaries and inlining of library routines may

make it possible to resolve aliasing beyond what can be done at compile time. A link

time optimizer may be able to scavenge registers that can be used to hold values that were

spilled to memory by the compiler. Finally, code restructuring transformations, such as

basic block duplication, might convert a partially redundant load into a fully redundant

load.

Many memory accesses result from the saving and restoring of callee-save registers

at subroutine boundaries. Some of these accesses may be unnecessary, either because

the registers saved and restored in this manner are not touched along all execution paths

through a subroutine, or because the code that used those registers became unreachable,

e.g., because the outcome of a conditional branch could be predicted as a result of in-

lining or interprocedural constant propagation, and therefore was deleted. To reduce the

number of such unnecessary memory accesses, the optimizer uses a variation onshrink-

wrapping[16] to move register save/restore actions away from execution paths thatdo



89

not need them. The difference between our implementation of shrink-wrapping, and that

originally proposed by Chow [16], is that we do not allow any execution path through

a function to contain more than one save and restore operation for a particular register.

Apart from this, if a function saves and subsequently restores a callee-save registerr but

does not changer, the instructions to save and restorer are eliminated.

Program with opt.(sec) without opt.(sec) with/without

compress 259.8 261.0 0.995

gcc 232.9 238.9 0.975

go 304.0 304.4 0.998

ijpeg 328.1 328.1 1.000

li 254.6 258.1 0.987

m88ksim 224.2 228.2 0.983

perl 182.0 186.1 0.978

vortex 316.4 315.8 1.002

Geometric Mean: 0.990

Table 4.7: Execution time impact of load and store avoidance

The performance impact of the load and store avoidance optimization is illustrated in

Table 4.7. The programs that benefit the most from this optimization aregcc, li, and

perl, with improvements ranging around 2%.

4.3.4 Unreachable Code Elimination

Unreachable code —i.e., code that will never be executed — typically arises at compile

time due to user constructs (such as debugging statements that are turned off by setting
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a flag) or as a result of other optimizations, and is usually detected and eliminated us-

ing intra-procedural analysis. By contrast, unreachable code that is detected at link time

usually has very different origins: most of it is due to the inclusion of irrelevant library

routines, together with some code that can be identified as unreachable due to the propa-

gation of actual parameter values into a subroutine. In either case, link time identification

of unreachable code is fundamentally interprocedural in nature.

Even though unreachable code can never be executed, its elimination is desirablefor

a number of reasons:

1. It reduces the amount of code that the optimizer needs to process, and can lead to

significant improvements in the amount of time and memory used.

2. It can enable optimizations that otherwise might not be possible, such as bringing

two basic blocks closer together, allowing for more efficient control transferin-

structions to be used, or allowing for a more precise liveness analysis which might

trigger several other optimizations.

3. It can reduce the amount of “cache pollution” caused by unreachable code that is

loaded into the cache when nearby reachable code is executed. This in turn can

improve the overall cache behavior of the program.

4. It simplifies certain analyses because after unreachable code elimination we can as-

sume that every node is reachable from a subroutineinit node or theunknownnode.

Unreachable code analysis involves a straightforward depth-first traversal of the (inter-

procedural) control flow graph, and is performed as soon as the (interprocedural) control

flow graph of the program has been computed, and is repeated later with the base opt-

mizations. Initially, all nodes are marked as dead, and then nodes are marked reachable

only if they can be reached from another node that is reachable. The entry point of the
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program (theinit node ofentryfun) is always reachable. We ignorereturn edges, hence

a returnnode will be marked reachable only if the correspondingcall node is reachable.

Program orig. code (kB) unreachable code (kB) ratio

compress 103472 21396 0.207

gcc 1503376 94504 0.063

go 363392 28312 0.078

ijpeg 302784 54592 0.180

li 188752 37000 0.196

m88ksim 244960 39256 0.160

perl 474000 43904 0.093

vortex 758928 139772 0.184

Geometric Mean: 0.133

Table 4.8: Effectiveness of unreachable code elimination

Due to technical reasons it is currently not possible to disable unreachable code elim-

ination without disabling other optimization in our optimizer, hence we only report static

improvements on the code size. The amount of unreachable code detected in our bench-

marks is shown in Table 4.8. It can be seen that the amount of unreachable code is quite

significant: in most programs, it exceeds 15%. On the average, about 13% of the instruc-

tions in our benchmarks were found to be unreachable. This is somewhat higher than the

results of Srivastava, whose estimate of the amount of unreachable code in C and Fortran

programs was about 4%–6% [67].
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4.4 Code Motion and Restructuring Optimization

While the optimizations described in the previous sections are always beneficialand

should be applied whenever possible, the optimizations presented next are best per-

formed when guided by execution frequency profiles.

4.4.1 Inlining

Inlining replaces a call to a subroutine with a copy of its body. It can be a very useful

optimization, because it eliminates the overhead associated with the call and allows us

to specialize the body for a particular call site (calling context). However, inlining is a

two edged sword. Many people have found unexpected performance degradation when

experimenting with inlining.

� Inlining at the source level might increase the register pressure [26] and leadto

suboptimal register allocations.

� In FORTRAN programs, the compiler might no be able to exploit the no-alias

requirement for arguments of subroutine calls, once such a subroutine has been

inlined [20].

� Inlining of recursive subroutines may lead to stack explosion [14].

� Through the increase in code size inlining might hurt instruction cache perfor-

mance [53].

Our optimizer inlines subroutines at the object code level. This avoids the problems

with the increased register pressure and FORTRAN calling conventions, but is somewhat

more complex than inlining at the source level, where inlining is just a syntactical trans-

formation. If a subroutine contains a computed jump, for example, it is not sufficient to
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merely clone the subroutine body and insert it at the call site. We also need to clone the

jump table. In order to deal with the problem of increased code size we employ execution

frequency profiles.

The optimizer inlines a subroutine if

� it is small (less than 4 instructions).

� it has only one call site.

� it is called very frequently from a call site.

The first two cases are always beneficial since there is no increase in codesize. In

the last case we reduce call overhead at the expense of code growth. We do not takethe

benefits of call site specialization into account when making inlining decisions.

Program with opt.(sec) without opt.(sec) with/without

compress 259.8 269.6 0.964

gcc 232.9 237.6 0.980

go 304.0 304.1 0.999

ijpeg 328.1 328.5 0.999

li 254.6 259.7 0.980

m88ksim 224.2 237.4 0.944

perl 182.0 178.2 1.021

vortex 316.4 321.3 0.985

Geometric Mean: 0.984

Table 4.9: Execution time impact of inlining
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The performance impact of this optimization is illustrated in Table 4.9. The programs

that benefit the most from this optimization arecompress, gcc, li, m88ksim, with

improvements ranging around 3%. Theperl benchmark suffers a slowdown of 2.1%

indicating that some more fine tuning of the optimization is necessary.

4.4.2 Code Positioning

Program with opt.(sec) without opt.(sec) with/without

compress 259.8 259.1 1.003

gcc 232.9 264.5 0.881

go 304.0 309.7 0.981

ijpeg 328.1 327.9 1.000

li 254.6 260.9 0.976

m88ksim 224.2 274.1 0.818

perl 182.0 204.5 0.890

vortex 316.4 372.2 0.850

Geometric Mean: 0.922

Table 4.10: Execution time impact of code positioning

Our code positioning is a variation of the Pettis-Hensen algorithm [57]. The algo-

rithm uses execution counts of control flow edges to achieve two goals:

� Minimization of the dynamic count of control flow changes (taken branches):

This is achieved by rearranging the basic blocks so that if basic blockA most likely

transfers control to basic blockB, thenB follows A in the program text. Decreasing

control flow changes improves the performance of pipelined CPUs like the Alpha.
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� Minimization of instruction cache misses:

This is achieved by grouping pieces of code that are likely to execute shortly after

another close together, thereby reducing the probability that they cause a conflict

in the instruction cache. Instruction caches usually have small associativity so that

more conflicts translate to more misses. Moving less frequently executedcode

away from frequently executed code reduces instruction cache pollution and im-

proves instruction cache utilization which leads to a reduction of capacitymisses.

The performance impact of this optimization is illustrated in Table 4.10. As observed

by others [17] before, this optimization yields substantial speedups. The programs that

benefit the most from this optimization aregcc, li, m88ksim, perl, andvortex,

with improvements ranging from 5% to 16%.

4.5 Overall Effectiveness

In this section we measure the overall effectiveness of the optimizer and compare it with

the vendor supplied optimizers.

4.5.1 Without Profiles

Table 4.11 compares the execution times of the SPECint95 benchmarks when compiled

with the vendor supplied C compiler with and without an additional run of theAlto

based link time optimizer. No profiling information is used.

The C compiler was invoked as

cc -O4 $(CFILES) -non shared -WL,-z -WL,-d -WL,-r

-lm -o exe.cc

whereCFILES is a list of all the C source files for the program. The resulting executable

was optimized using



96

alto -i exe.cc -o exe.alto

The optimizer achieves an average speedup of 13.9%.

Program cc (sec) Alto (sec) Alto/cc

compress 282.1 263.9 0.935

gcc 290.2 259.5 0.894

go 346.5 306.2 0.884

ijpeg 337.7 329.7 0.976

li 315.5 262.4 0.832

m88ksim 337.0 261.7 0.777

perl 247.9 209.2 0.844

vortex 493.4 378.1 0.766

Geometric Mean: 0.861

Table 4.11: Overall execution time impact (without profiles)

4.5.2 With Profiles

Next, we measured the performance achievable using the existing capabilities for static

optimization available under Digital Unix/Alpha. For this, we compiled the benchmarks

at the same optimization level as before, but additionally with profile-directed inter-file

optimization and link time optimization usingOM [67]. For this, the programs were

compiled as follows:

1. First, the benchmarks were compiled as

cc -O4 $(CFILES) -non shared -lm -o exe.cc
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whereCFILES is a list of all the C source files for the program.

2. The resulting executableexe.cc was instrumented withpixie and run on the

SPEC95 training input for the benchmark to produce an execution profile. A feed-

back file was then generated from this profile using the command

prof -pixie -feedback fb.cc exe.cc

3. The source files were recompiled with profile-guided and inter-file optimization

turned on, using the feedback file generated in the previous step:

cc -O4 -ifo -inline speed -feedback fb.cc $(CFILES)

-non shared -lm -o exe.ccfb

The switch-ifo turns on inter-file optimization and-inline speed instructs

the compiler to inline routines to enhance execution speed.

4. The resulting executableexe.ccfb was again instrumented withpixie, using

the SPEC95 training inputs.

5. The resulting profiling information forexe.ccfbwas used to recompile the pro-

gram a final time, this time with theOM link time optimizer turned on as well:

cc -O4 -ifo -inline speed -feedback fb.ccfb -om

-WL,-om compress lita -WL,-om dead code

-WL,-om ireorg feedback,exe.ccfb

$(CFILES) -non shared -lm -o exe.final

The reason it is necessary to regenerate the profile information forOM is that the

feedback-directed optimizations can change code addresses, rendering the original

profile useless from the perspective ofOM. Notice that in this step, two distinct
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sets of profiles are being used: the feedback filefb.cc, generated from the orig-

inal profile obtained in step 2; and the profile forexe.ccfb, obtained for the

executable resulting from feedback-directed inter-file optimization in step 4.

Compared to the procedure just described, optimizing a benchmark utilizing profiling

information with theAlto based optimizer is rather simple.

1. First, the programs were compiled as

cc -O4 $(CFILES)-non shared -WL,-z -WL,-d -WL,-r

-lm -o exe.cc

whereCFILES is a list of all the C source files for the program.

2. The resulting executableexe.cc was instrumented withpixie and run on the

SPEC95 training input for the benchmark to produce an execution profile.

3. Finally theAlto based optimizer was run exploiting the profiling information

generated in the previous step

alto -i exe.cc -o exe.final

Table 4.12 is similar to Table 4.11 except that we allow both the vendor supplied

compiler and theAlto based optimizer to utilize profiling information obtained from

training input of the SPECint95 benchmarks.

As can be seen from Table 4.12, theAlto based optimizer beats the best optimization

techniques provided by the vendor by 5.7%.
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Program cc (sec) Alto (sec) Alto/cc

compress 272.8 259.8 0.952

gcc 226.3 232.9 1.029

go 299.7 304.0 1.014

ijpeg 332.9 328.1 0.986

li 288.2 254.6 0.883

m88ksim 230.8 224.2 0.971

perl 201.7 182.0 0.902

vortex 390.3 316.4 0.811

Geometric Mean: 0.941

Table 4.12: Overall execution time impact (with profiles)
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CHAPTER 5

COMMON CASE SPECIALIZATION

In the previous chapter we discussed classical compiler optimizations in the context

of link time optimization. Only a few of the optimizations exploited profiling informa-

tion, and those that did used simple execution frequency profiles. In this chapter we

describe a highly speculative optimization exploiting additional, more sophisticated pro-

filing information. Even though, this optimization can be incorporated into a regular

compiler, it is presented here in the context of link time optimization.

Knowledge that an expression in a program can be guaranteed to evaluate to some

particular constant at compile time can be profitably exploited by constant folding (cf.

Section 4.2.1). This is an “all-or-nothing” transformation, in the sense that unlessthe op-

timizer is able to guarantee that the expression under consideration evaluatesto a compile

time constant, the transformation cannot be applied. In practice, however, itis often the

case that an expression at a point in a program “almost always” takes on a particular

value [11]. As an example, in the SPEC95 benchmarkperl, the functionmemmove()

is called close to 24 million times: in almost every case, the argumentgiving the size of

the memory region to be processed has the value 1; we can take advantage of this fact

to direct such calls to an optimized version of the function that is significantly simpler

and faster. As another example, in the SPEC95 benchmarkli, a very frequently called

function,livecar(), contains aswitch statement where one of the case labels, cor-

responding to the typeLIST, occurs over 80% of the time; knowledge of this fact allows

the code to be restructured so that this common case can be tested first, and so control
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does not have to go through the jump table, which is relatively expensive. As theseex-

amples suggest, if we know that certain values occur very frequently at certain points

in a program, we may be able to take advantage of this information to improve theper-

formance of the program. Unfortunately, classical compiler techniques cannot be used

to take advantage of knowledge of the distribution of values in order to optimize forthe

common case. The idea behind common case specialization is to employ sophisticated

(value) profiles to allow such optimization.

There are a number of technical issues that have to be addressed to accomplish this.

Specializing a piece of code for “too many” different values, or specializingcode where

the benefits of specialization are not high enough, can lead to performance degradation.

It is therefore necessary to determine what code to specialize, and to what extent. It

is also necessary to determine how the specialization should be carried out, so that the

common case is made efficient while the code remains correct.

The following sections address these questions and show how value-profile-based

specialization can be automated and integrated into the link time optimizer presented in

the previous chapter.

Related work: There is a considerable body of work on program specialization

within the partial evaluation community: Joneset al. give an extensive discussion and

bibliography [43]. This work focuses largely on aggressive code specialization starting

with known values for some or all of a program’s inputs. The issue of specialization

based on value profiles is not considered.

Some implementations of object-oriented languages attempt to mitigate the high cost

of dynamically dispatched calls using a limited form of value-profile-based specializa-

tion. The idea — referred to astype feedbackor receiver class prediction[3, 41] — is

to monitor the targets of dynamically dispatched function calls, and to use this informa-

tion to inline the code for frequently called targets. The main limitation ofthis approach
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is that the specialization is restricted to dynamically dispatched function calls, and so

will not be applied to “ordinary” code even if such code could benefit substantially from

knowledge of the values most commonly encountered at runtime.

Another approach, termeddynamic compilation, specializes code at run time [5, 50,

30, 19]. It focuses on values which are unknown at compile time but constant at run time.

Those values are usually identified with support from the programmer, through source

code annotations, and the process is therefore not fully automatic. The optimizationis

usually performed by producing a machine code template at compile time and then filling

in the blanks at run time: this causes additional overhead. Furthermore, this approach

implies that the code may not be optimized to the fullest extent, since the template is not

specialized for each filled in value.

Calderet al. have investigated issues and techniques for value profiling extensively

[11]. Our implementation of value profiling was inspired by theirs and is very similar

to it. While Calderet al. consider profiling both registers and memory locations, we

profile only registers. We use a two-stage profiling process in order to reduce the time

and space overheads. The idea is to first profile the application using a simple basic-block

profiler such aspixie, and then use the execution frequency information so obtained to

identify candidates for value profiling and specialization. In a different paper, Calderet

al. discuss value-profile-based optimization [12]; they use hand-transformed examples

to show that value-profile-based specialization can yield significant speed improvements.

By contrast, the work presented here describes value-profile-based specialization that is

fully automatic and that has been integrated into theAlto system. This automation is

nontrivial, since it requires a careful cost-benefit analysis within the optimizer to avoid

degradation of performance. The details of this cost-benefit analysis, and of how the

specialization is carried out, are described in the following sections.
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5.1 Preliminaries

Suppose we have a code fragmentC that we wish to specialize for a particular valuev

of a register (or variable)r. Conceptually, value-profile-based specialization transforms

the codeC into:

if (r == v) then hCi
r=v elseC

wherehCi
r=v represents the residual code ofC after it has been specialized to the value

v of r. The test ‘if (r == v) : : : ’ is needed because we cannot guarantee thatr will

always take on the valuev at that program point. The idea can be generalized to multiple

values: given a probability distribution on these values, we can use a collection of tests

such as the one above, organized as an optimal binary search tree, to choose between the

specialized versions. For simplicity of discussion, we focus on specialization for a single

value here, since this illustrates the technical issues that arise.

Notice that, while the specialized codehCi
r=v may be more efficient than the original

codeC, the overall transformed code will actually be less efficient than the original code

for values ofr other thanv, since a runtime test has been introduced. There is thus a

tradeoff associated with the transformation: the cost of some execution pathsmay be

reduced by the specialization, but this will be accompanied by an increase in the cost of

other execution paths. If this tradeoff is not assessed carefully, specialization can lead to

a degradation in performance.

Before we can actually carry out any code specialization, there are a numberof deci-

sions that have to be made. Specifically, we have to decide the program point1 p where

the specialization should begin (this corresponds to the point where runtime tests onval-

ues have to be inserted, as discussed above); the registerr whose values we are interested

1For our purposes a “program point” refers to the points immediately before or after an instruction; this
includes the entry and exit points of basic blocks.
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in;2 the particular value(s)v that we specialize for; and the actual code fragmentC that

is to be subjected to specialization. Aspecialization tripleis a triple of the form(p; r;v),

wherep is a program point,r is a register, andv is a value for that register; such triples

identify the runtime tests that have to be inserted in the context of value-profile-based

specialization and the program points where they must be inserted. Thespecialization

regionof a triple(p; r;v) refers to the region of code that is chosen for specialization; this

identifies the code fragments that appear in thethen andelsebranches of the runtime

test corresponding to that triple. The details of how specialization triplesand regions are

chosen are discussed in the next section.

5.2 Code Specialization

Value-profile-based code specialization is a three-step process. Section 5.2.1 describes a

cost-benefit analysis that is fundamental to our approach. In order to reduce the timeand

space overheads of value profiling as far as possible, we first identify which (program

point, register) pairs merit profiling. Section 5.2.2 discusses how this is done so as to

avoid profiling instructions that cannot help us speed up the program. The second step,

discussed in Section 5.2.3, is to carry out the instrumentation and profiling itself so as

to obtain the value profiles. The final step, discussed in Section 5.2.4, uses the value

profiles to carry out specialization for those program points where this is deemedto be

profitable.

2In general, specialization can be carried out based on the value of a register, variable, or memory
location, or relationships between such values. To simplify the discussion, and because our current imple-
mentation carries out specialization based on register values, we refer to register values when discussing
specialization.
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5.2.1 Estimating Costs and Benefits of Specialization

Our value profiling and specialization decisions are guided by estimates of the benefit

that would be obtained from code specialization, given the knowledge that a registerr has

valuev at a program pointp, denoted byBene�t(p; r;v). The benefit tries to approximate

the number of saved CPU cycles. As we will explain below the estimate givesa lower

bound on the actual benefit. There are two components to the computation of benefits:

(i) For each instructionI that uses the value ofr available atp, there may be some

benefit to knowing that its value isv. The magnitude of this benefit will, in general,

depend on the type ofI , the operand position wherer occurs, and the actual value

v of r, and is denoted bySavings(I ; r;v).

(ii) It may happen that knowing the value of an operand registerr of an instruction

I allows us to determine the value computed byI . In this case,I is said to be

evaluablegiven r, written Evaluable(I ; r). If I is evaluable givenr, the benefits

obtained from specializing other instructions that use the value computed byI for

a particular value ofr can also be credited to knowing the value ofr at p. The

indirect benefits so obtained from knowing that the value ofr in instructionI is v

are denoted byIndirBene�t(I ; r;v).

Let ExeFreq(I) denote how oftenI is executed. LetUses(p; r) denote the set of all in-

structions that use the value of registerr that is available at program pointp. Then the

benefit of knowing that a registerr has valuev at program pointp is given by the follow-

ing:

Bene�t(p; r;v) = ∑
I2Uses(p; r)

(ExeFreq(I)�Savings(I ; r;v)+ IndirBene�t(I ; r;v))

The indirect benefits of knowing that registerr has valuev at instructionI is given by the

following. Here,p0 is the program point immediately afterI ; ResultReg(I) denotes the
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register into whichI computes its result; andValuer=v(I) denotes the value computed by

instructionI given that registerr has the valuev (this is undefined ifEvaluable(I ; r) is

false).

IndirBene�t(I ; r;v)=

8

<

:

Bene�t(p0;ResultReg(I);Valuer=v(I)) if Evaluable(I ; r)

0 otherwise

An approximation is made when estimating the indirect benefit, because the factthat r

equalsv is forgotten in the case thatI becomes evaluable. The only information that is

propagated in that case isResultReg(I) equalsValuer=v(I). Consider the following code

example:

ldq r1, 4(r6) # load value from memory into r1

addq r1, 1, r2 # compute

mulq r1, r2, r0 # r1 * (1+r1) into r0

We want to compute the benefit of knowingr1’s value after the load instruction. Knowing

r1 will make theaddq instruction evaluable, hence adding to the overall benefit and

makingr2 also known. However, themulq instruction will not appear to be evaluable,

we just obtain the sum of the benefits of knowingr1 andr2 separately. However, such

case are rare and the approximation allows us to simplify the implementation drastically:

The equations for computing benefits propagate information from the uses of a register

to its definitions. These equations can, in general, be recursive, corresponding toa cycle

in the def-use chain. The standard approach to solving recursive equations in the context

of compile-time program analysis is to compute—usually iteratively—a fixpoint over a

suitable domain. We do not follow this approach, instead we use our cycle-free use-def

chain datastructure (cf. Section 3.2) and propagate information bottom-up from usesof

registers to their definitions, in a single pass.
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The benefits of specialization have to be weighed against the costs incurred due to

runtime tests. The cost of such a test depends on the register and value being tested:

e.g., testing for the value 0 is usually fairly cheap, while testing for a non-zero floating

point constant may incur a load from memory. The cost of testing whether a registerr

has a valuev is denoted byTestCost(r;v). The cost tries to approximate the number of

additional CPU cycles needed.

5.2.2 Identifying Candidates for Specialization

In order to reduce the time and space overheads for value profiling as far as possible,

we attempt to identify candidate (program point, register) pairs for which specialization

could conceivably yield a performance improvement if we had a sufficiently skewed run-

time distribution of values. This is done by estimating, for each such pair, themaximum

benefitMaxBene�t(p; r) that could be achieved via specialization if the value ofr at p

was completely invariant dynamically—that is, always had the same value. As in the case

of benefits, discussed in the previous section, the computation of this quantity has two

components. The maximum savings incurred from the specialization of an instructionI

to the value of a registerr is given by

MaxSavings(I ; r) = max
v

Savings(I ; r;v)

In the implementation, of course, we do not compare the values ofSavings(I ; r;v) for all

possiblev, but resort to what is essentially a table lookup. The maximum benefit is then

given by

MaxBene�t(p; r)= ∑
I2Uses(p; r)

(ExeFreq(I)�MaxSavings(I ; r)+MaxIndirBene�t(I ; r))
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whereMaxIndirBene�t(I ; r) is given by

MaxIndirBene�t(I ; r) =

8

<

:

MaxBene�t(p0;ResultReg(I)) if Evaluable(I ; r)

0 otherwise

Thus,MaxBene�t(I ; r) takes into account the type of the instruction and operand posi-

tions wherer occurs, but not the actual value ofr at p, since this is not yet known. Thus,

the division instruction ‘z = x div r’ will be given a greater benefit than ‘z = x

div r’, because the first case offers greater possibilities for strength reductions based

on the knowledge of the value ofr. On the other hand, ‘z = r div 32’ is evaluable

and therefore is given an even higher benefit which is strongly related to the latency of

thediv instruction. Conditional branches are never evaluable since they do not com-

pute a value; however, these instructions are assigned a relatively high benefit, since the

branch can be optimized away if the condition register’s value is known.

Analogously, the minimum cost of testing a registerr for a valuev is given by

MinTestCost(r) = min
v

TestCost(r;v):

Once maximum benefits have been computed as described above, the candidates for

profiling are chosen as follows: registerr is value-profiled at pointp if and only if

MaxBene�t(p; r)>MinTestCost(r)�ExeFreq(p):

5.2.3 Value Profiling

Given a set of (program point, register) pairs to be value-profiled, we use a scheme

based on that of Calderet al. [11] for obtaining value profiles. As mentioned earlier,

our implementation of value profiling obtains profiles for registers only, not for memory

locations. The actual profiling is carried out by a function created for this purpose. This

function compares the value of the register in question with the contents of a fixed-size
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table of previously encountered values. If the current value is already in the table, the

count of that value is incremented; otherwise, if the table is not full, the value is added to

the table and its count initialized to 1. If the table is full the value is ignored.Periodically,

the table is cleaned by evicting the least frequently used values from the table: this allows

new values to enter the table. We also keep track of the total number of timesexecution

passes through the pointp by incrementing a counter associated with that point.

We have also implemented a variant of this scheme that we callpredicate profiling,

where we ask how often a given predicate is satisfied at a given program point.Examples

of such predicates are: “is the value of a given registerr non-negative?” or “is the value

of registerra different from that of registerrb?” Notice that predicate profiles are not

simply summaries of value profiles: e.g., given value profiles for registersra andrb, we

cannot in general reconstruct how often the predicatera == rb holds. The predicate

that we choose to profile at any program point is typically determined by considerations

of the possible optimizations that might be enabled based on that predicate’s profile.

Predicate profiles are important for three reasons. First, they conceptuallygeneralize the

notion of value profiles by allowing us to capture the distribution of relationships between

different program entities. Second, a predicate profile may have a skewed distribution,

and therefore enable optimizations, even if the value profiles for the constituents of the

predicate profile are not very skewed: for example, a predicatera 6= rb may be true almost

all of the time even if the values inra and rb do not have a very skewed distribution.

Finally, the implementation of predicate profiling can be made more efficient than that

of general value profiling because we know that the evaluation of a predicate can take on

at most two values.
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5.2.4 Carrying out the Specialization

Once the value profiles have been obtained, code specialization involves two steps. First,

it is necessary to determine the particular specialization triples that should be considered,

and the corresponding specialization regions. The code transformation is then carried out

by cloning the specialization region, incorporating the clone into the code together with

tests on register values as described above, and carrying out the actual specialization.

5.2.4.1 Identifying Specialization Triples

The benefit computation described in Section 5.2.1 is used to identify the specialization

triples for which code specialization is worthwhile. Since we know the distribution of the

values taken on at the points that have been profiled, we can determine the probability

prob(v) with which a valuev occurs. Specializing at a program pointp for a valuev of a

registerr is then worthwhile only if

Bene�t(p; r;v)�prob(v)> TestCost(r;v)�ExeFreq(p)

Once we have identified the set of specialization triples for which the benefits of spe-

cialization exceed its runtime cost, we have to choose which of these should actually

be specialized. An issue that has to be addressed here is that the specialization regions

for different such triples may overlap. This is illustrated by the following instruction

sequence:

ldq r5, 0(r4) # r5 := load from 0(r4)

and r5, 0xff, r6 # r6 := r5 & 0xff

Suppose that we have value profiled registerr5 after theldq instruction and registerr6

after theand instruction, and that based on the cost benefit analysis, both of these instruc-

tions are candidates for specialization. However, the program points are dependent—r6
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is computed fromr5—and their specialization regions overlap. Depending on the cir-

cumstances, it might be better to specialize based on theldq instruction because more

instructions use the result of this instruction; in other situations, it might be better to

specialize based on theand instruction because its value distribution might be more

skewed. In such cases, we specialize only the more promising one, based on the cost

benefit analysis; in the case of a tie, the program point that dominates the other is cho-

sen (as discussed in Section 5.2.4.2, overlaps are not possible unless one of the points

dominates the other).

5.2.4.2 Identifying Specialization Regions

Given a set of specialization triples, we have to determine the specialization region as-

sociated with each of them. The basic intuition is that given a triple(p; r;v), we want to

identify the instructions that, directly or indirectly, use the value ofr available atp, and

so might potentially benefit from specialization (cf. Figure 5.1).

p

Specialization
region for

(p,r,v)

Figure 5.1: Specialization region
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We first make precise the notion of an instruction using a value “directly or indi-

rectly.” Given a program pointp and registerr, we say that(p; r) influencesan instruc-

tion I if (i) I uses the value ofr at p; or (ii) there is an instructionJ at a program pointp0

such thatJ defines a registerr 0, (p; r) influencesJ, and(p0; r 0) influencesI . Then, given

a triple(p; r;v), the specialization region for this triple is defined to be the smallest setof

basic blocksRsuch that

– the basic blockBp containingp is in R;

– if (p; r) influences an instructionI occurring in a basic blockBI , andp dominates

BI , thenBI is in R; and

– if B is in R, B 6= Bp, andB0 is a (immediate) intra-procedural predecessor ofB in

the control flow graph of the program, thenB0 is in R.

It is not hard to see that, given a specialization triple(p; r;v), the basic blockBp contain-

ing p dominates every block in the specialization region of this triple. This is necessary

for correctness: we have to ensure that any execution path that can reach the specializa-

tion region of this triple must pass through the test inserted atp.

There are two issues that are not addressed by this definition of specialization regions.

The first is that, given a triple(p; r;v), it may happen that(p; r) influences an instructionI

but the basic blockBI containingI is not in the specialization region of this triple because

p does not dominateBI . This problem can be remedied by duplicating code so as to make

p dominateBI . The second is that, as given, this definition does not take into account

the size of a specialization region relative to the benefits obtained from its specialization.

It may happen that an instructionI in a blockBI that is very far away from the point

p is influenced by the value of a registerr at p. If we includeBI in the specialization

region, it is necessary to also include all of the blocks betweenp andBI , even though
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these blocks may not benefit from specialization. This could, in extreme cases, give rise

to large specialization regions in order to include distant influenced instructions. This

can be handled using a notion ofdensityof influenced instructions, analogous to the no-

tion of density of case labels used for code generation forswitch statements [9, 44], to

limit the specialization regions to code that contains a sufficiently high proportion of in-

structions that would benefit from the specialization. Currently,Alto neither duplicates

code nor does it take the density into account.

5.2.4.3 Transforming the Program

The code transformations that are effected during specialization can be quiteinvolved.

They can depend on the type of instruction being specialized, the operand being special-

ized for, and the particular value of the operand. They can cause nontrivial restructuring

of the control flow graph of the program, e.g., when the outcome of a conditional branch

can be determined. Because of the involved nature of these transformations, andsince

this functionality is already available elsewhere in our system in the routines that imple-

ment constant propagation and constant folding (cf. Section 4.2.1), we do not have any

separate code to implement all these transformations specifically for value-profile-based

specialization. Instead, when specializing for a triple(p;v; r), we simply create a clone of

the specialization region for that triple and insert a test at program pointp that testsr and

transfers control to the clone ifr ’s value is notv (cf. Figure 5.2). No further work specific

to value-profile-based specialization is necessary beyond this: the actualspecialization

of the code then takes place in the course of normal constant propagation and constant

folding/strength reduction.
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p

addq r,v,rB B
spec clone

bne  r,  Bclone

addq r,v,r

subq r,v,r

Figure 5.2: Specialization transformation

Given a specialization triple(p; r;v), a variety of idioms may be used to implement

the test inserted at the program pointp, depending on the magnitude of the valuev and

whether or not there is a free register available. If a free registerr 0 is available, we simply

compute the difference ofr andv into r 0, then conditionally branch to the cloned code

if r 0 is not zero. If there are no free registers available, ifv is small enough to be an

immediate operand the following pair of instructions is inserted (cf. Figure 5.2): 3.

subq r, v, r # r := r - v

bne r, Bclone # if (r 6= 0) goto Bclone;

# else fall through to Bspec

To compensate for the effect of thesubq instruction, we add the instruction ‘addq r,

v, r’ at the entry to both the original specialization region and its clone.

3The meaning of the Alpha machine instructions is explained in Appendix A
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The actual specialization subsequently takes place during constant propagation and

constant folding (cf. Section 4.2.1). Note, that constant propagation is able to derive

information from conditionals [76]. If a basic block ends with a ‘beq r, : : : ’ in-

struction (“branch ifr is 0”), then the successor of this block on the true-branch will

receive the information thatr contains 0, while that on the false-branch will receive the

information thatr is non-zero;bne instructions (“branch if not equal to 0”) are treated

analogously. This turns out to be crucial for carrying out value specialization.

For the transformation sequence described above, constant propagation determines,

from the instruction ‘bne r, Bclone’ inserted as discussed above, that the registerr has

the value 0 at entry to the successor along the false-branch, i.e., the blockBspec. From

this, it determines that after the instruction ‘addq r, v, r’ in Bspec, the registerr

has the valuev. This information is then propagated through the code fragment being

specialized, and is used to carry out various optimizations as discussed above.

As an example of the effectiveness of our approach consider the code in Figure 5.3,

which is part of the functionkilltime() in the SPEC95 benchmarkm88ksim. The

left hand side shows the unspecialized code. The code on the right hand side has been

specialized forr16= 1. The number of instructions is significantly reduced. Note, that

the code shown represents a loop and that the test whetherr16= 1 hold occurs outside

of this loop.
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loop: cmpult r6, r16, r0

lda r1, 0(r16)

cmovne r0, r6, r1

ldl r2, 4(r4)

subl r6, r1 ,r0

stl r0, 0(r4)

cmpult r2, r16, r0

lda r1, 0(r16)

cmovne r0, r2, r1

ldl r5, 8(r4)

subl r2, r1 ,r0

stl r0, 4(r4)

cmpult r5, r16, r0

lda r2, 0(r16)

cmovne r0, r5 ,r2

ldl r1, 12(r4)

subl r5, r2 ,r0

stl r0, 8(r4)

cmpult r1, r16, r0

lda r25, 0(r16)

cmovne r0, r1, r25

lda r4, 16(r4)

subl r1, r25, r1

cmpult r4, r3 ,r0

stl r1, -4(r4)

bne r0, loop

(a) unspecialized

loop: cmpult r31, r6 ,r0

ldl r1, 4(r4)

subl r6, r0 ,r0

stl r0, 0(r4)

cmpult r31, r1, r0

ldl r2, 8(r4)

subl r1, r0 ,r0

stl r0, 4(r4)

cmpult r31, r2 ,r0

ldl r1, 12(r4)

subl r2, r0 ,r0

stl r0, 8(r4)

cmpult r31, r1 ,r25

lda r4, 16(r4)

subl r1, r25,r1

cmpult r4, r3 ,r0

stl r1, -4(r4)

bne r0, loop

(b) specialized forr16=1

Figure 5.3: Effect of value specialization on a node inm88ksim::killtime()
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We have also implemented predicate profiling (cf. Section 5.2.3) for resolving pointer

aliasing relationships. If we can determine whether or not two pointers are aliases in a

frequently executed fragment of code, we can use this information in a variety of op-

timizations, including the avoidance of redundant memory accesses, and in instruction

scheduling. For example, in the SPEC95 benchmarkm88ksim, predicate profiling al-

lows us to determine that three pointers (registersr2,r17,andr18) in a heavily executed

loop within the functionalignd() are usually not aliased; this information is used

to eliminate several redundant memory accesses and thereby effect a significant speed

improvement. Figure 5.4 shows the unspecialized code. The specialized version of the

code is shown in Figure 5.5. The number of instructions has been reduced by one third.

Note, that the code shown represents a loop and that the test whether the predicateis true

occurs outside of this loop.
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loop:

ldl r3, 0(r18)

subl r27, 4, r27

ldl r0, 0(r2)

and r3, 1, r3

bis r0, r3 ,r0

stl r0, 0(r2)

ldl r0, 0(r18)

zapnot r0, 15, r0

srl r0, 1, r3

stl r3, 0(r18)

ldl r0, 0(r17)

sll r0, 31, r0

bis r3, r0 ,r0

stl r0, 0(r18)

ldl r0, 0(r17)

zapnot r0, 15, r0

srl r0, 1, r0

stl r0, 0(r17)

ldl r0, 0(r18)

ldl r3, 0(r2)

and r0, 1, r0

bis r3, r0 ,r0

stl r0, 0(r2)

ldl r0, 0(r18)

zapnot r0, 15, r0

srl r0, 1, r3

stl r3, 0(r18)

ldl r0, 0(r17)

sll r0, 31, r0

bis r3, r0 ,r0

stl r0, 0(r18)

ldl r0, 0(r17)

zapnot r0, 15, r0

srl r0, 1, r0

stl r0, 0(r17)

ldl r0, 0(r18)

lda r4, -4(r27)

ldl r3, 0(r2)

and r0, 1, r0

bis r3, r0 ,r0

stl r0, 0(r2)

ldl r0, 0(r18)

zapnot r0, 15, r0

srl r0, 1, r0

stl r0, 0(r18)

ldl r3, 0(r17)

sll r3, 31, r3

bis r0, r3 ,r0

stl r0, 0(r18)

ldl r0, 0(r17)

zapnot r0, 15, r0

srl r0, 1, r0

stl r0, 0(r17)

ldl r0, 0(r18)

ldl r3, 0(r2)

and r0, 1, r0

bis r3, r0 ,r0

stl r0, 0(r2)

ldl r0, 0(r18)

zapnot r0, 15, r0

srl r0, 1, r3

stl r3, 0(r18)

ldl r0, 0(r17)

sll r0, 31, r0

bis r3, r0 ,r0

stl r0, 0(r18)

ldl r0, 0(r17)

zapnot r0, 15, r0

srl r0, 1, r0

stl r0, 0(r17)

bge r4, loop

Figure 5.4: Unspecialized code fragment fromm88ksim::align()
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loop:

ldl r4, 0(r18)

subl r27, 4, r27

ldl r0, 0(r2)

and r4,1,r3

bis r0,r3 ,r7

zapnot r4,15,r0

srl r0,1,r4

ldl r0,0(r17)

sll r0,31,r3

bis r4,r3 ,r6

zapnot r0,15,r0

srl r0,1,r5

addl r7,r31,r3

and r6,1,r0

bis r3,r0 ,r4

zapnot r6,15,r0

srl r0,1,r3

addl r5,r31,r0

sll r0,31,r0

bis r3,r0 ,r6

zapnot r5,15,r0

srl r0,1,r0

addl r0,r31,r5

lda r7,-4(r27)

addl r4,r31,r3

and r6,1,r0

bis r3,r0 ,r4

zapnot r6,15,r0

srl r0,1,r0

sll r5,31,r3

bis r0,r3 ,r0

zapnot r5,15,r3

srl r3,1,r5

addl r4,r31,r4

and r0,1,r3

bis r4,r3 ,r3

stl r3,0(r2)

zapnot r0,15,r0

srl r0,1,r3

addl r5,r31,r0

sll r0,31,r0

bis r3,r0 ,r0

stl r0,0(r18)

zapnot r5,15,r0

srl r0,1,r0

stl r0,0(r17)

bge r7,loop

Figure 5.5: Specialized code fragment fromm88ksim::align()
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5.3 Experimental Setup

For the experimental evaluation we used the 18 programs from the SPEC95 benchmark

suite [65]. The programs were compiled with the DEC C (FORTRAN) compiler V5.2-

036 (V3.8-064) invoked ascc -O4 (f77 -O4), with additional linker options (-r

-d -z -non shared) to retain relocation information and produce statically linked

executables.4 Both the initial execution frequency profiles as well as the value profiles

for each program were obtained using the SPEC95 training inputs; the execution times

reported were then obtained using the SPEC95 reference inputs.

The timings were obtained on a lightly loaded DEC Alpha workstation with a 300

MHz Alpha 21164 processor with a split primary cache (8 kB each of instruction and

data cache), 96 kB of on-chip secondary cache, 2 MB of off-chip backup cache, and 512

MB of main memory, running Digital Unix/Alpha V4.0B (Rev. 564). In each case, the

execution time reported is the smallest time of 10 runs.

5.4 Experimental Results

Table 5.1 compares, for each benchmark, the total number of program points that could

have been profiled/specialized (column 2) with the number that were actually profiled

(column 3) and the number that were then specialized (column 4). This indicates that

our computation of the cost/benefit tradeoffs is highly selective: the small numberof

points chosen for profiling keeps the value profiling overhead small, while the small

number of points chosen for specialization keeps the code growth modest.

4We use statically linked executables becauseAlto relies on the presence of relocation information
for its control flow analysis. The Digital Unix/Alpha linkerld refuses to retain relocation information for
non-statically-linked executables.
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Program #Points #Profiled #Specialized

compress 15536 30 0

gcc 264020 2944 219

go 63895 348 4

ijpeg 46859 103 2

li 28168 54 5

m88ksim 36909 106 8

perl 78976 192 5

vortex 97037 55 6

applu 92323 171 7

apsi 108705 184 20

fpppp 90288 102 6

hydro2d 92276 139 6

mgrid 85826 10 1

su2cor 93673 111 5

swim 83660 26 0

tomcatv 82586 16 1

turb3d 90543 67 5

wave 109267 123 10

Table 5.1: Extent of profiling and specialization

Table 5.2 documents the code growth caused by value specialization. Column 2 states

the code size of the benchmarks optimized with theAlto optimizer (cf. Chapter 4)

without value specialization, column 3 states the size with value specialization. Column
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4 has the ratio. The code growth is very moderate, especially for the integer subset of the

benchmarks where it does not exceed 1%. For floating point subset it does not exceed

3.5%.

Program PlainAlto (kB) Specialized (kB) Ratio

compress 74688 74688 1.000

gcc 1183488 1195584 1.010

go 296832 297920 1.004

ijpeg 213312 213376 1.000

li 125056 125120 1.001

m88ksim 174848 175296 1.003

perl 357248 357568 1.001

vortex 433216 433236 1.000

applu 427712 442624 1.035

apsi 494656 502208 1.015

fpppp 417728 418816 1.003

hydro2d 427264 437632 1.024

mgrid 399744 399780 1.000

su2cor 433600 442432 1.020

swim 388672 388672 1.000

tomcatv 387008 387024 1.000

turb3d 421056 422592 1.004

wave 498432 509632 1.022

Table 5.2: Code growth due to specialization
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Program PlainAlto (sec) Specialized (sec) Ratio

compress 259.8 259.8 1.000

gcc 232.9 229.8 0.987

go 304.0 299.3 0.985

ijpeg 328.1 327.9 1.000

li 254.6 248.8 0.977

m88ksim 224.2 194.3 0.867

perl 182.0 175.1 0.962

vortex 316.4 314.2 0.993

applu 357.6 354.4 0.991

apsi 194.5 189.6 0.975

fpppp 418.2 393.7 0.941

hydro2d 425.9 426.0 1.000

mgrid 339.9 328.6 0.967

su2cor 217.0 214.7 0.989

swim 265.0 264.9 1.000

tomcatv 283.1 279.2 0.986

turb3d 336.2 336.5 1.001

wave 223.7 217.9 0.974

Table 5.3: Execution time impact of value-profile-based specialization

The timing measurements are shown in Table 5.3. Column 2 states the execution

time of the benchmarks optimized with theAlto optimizer without value specialization,

column 3 states the execution time with value specialization. Column 4 hasthe ratio. It
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can be seen from these numbers that automatic value-profile-based specialization can

yield significant performance improvements for nontrivial programs. The programs that

benefit the most areli, m88ksim, perl, apsi, fpppp, andmgrid.

The sources of performance improvements for these benchmarks are discussed below.

There is, however, one caveat. In our system, value-profile-based specialization is carried

out after subroutine inlining. Because of this, the code structure encountered during

specialization, and the subroutines associated with the specialized code fragments, may

not always correspond to those of the source program.

li : Sequences of independent conditionals in functionsxleval() andsweep() are

transformed so that the common case is tested first. Aswitch statement in the

functionlivecar() is transformed so that the common case did not go through

a jump table.

m88ksim : Predicate profiling allows us to determine that three pointers in the func-

tion alignd() are unaliased in the common case, allowing the elimination of

several load and store instructions in that function. The functionkilltime() is

specialized for an argument of 1.

perl : The functionmemmove() is specialized for the single byte move. The (in-

ternal) functionOtsDivide64Unsigned(), which emulates integer division

(since the Alpha does not have an integer division instruction), is specialized for

the divisor 16.

apsi : Specialization allows several multiplication operations in the subroutinepset,

and subroutines inlined into it, to be strength-reduced because one of the operands

is zero.
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fpppp : The common case for a computed goto statement in the subroutineefill is

specialized.

mgrid : Specialization allows a multiplication operation in subroutineresid to be

strength-reduced because one of the operands is zero.

Calderet al. report significant benefits from specializing thehydro2d benchmark [12].

To our surprise, however, we were not able to find significant specialization opportunities

in this program: an examination of the code suggests that this may be due to improve-

ments in the DEC FORTRAN compiler since their work was carried out.
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CHAPTER 6

CODE COMPRESSION

In recent years there has been an increasing trend towards the incorporation ofcom-

puters into a wide variety of devices, such as palm-tops, telephones, embedded con-

trollers, etc. In many of these devices, the amount of memory available is limited, due

to considerations such as space, weight, power consumption, or price. At the same time,

there is an increasing desire to use more and more sophisticated software in such de-

vices, such as encryption software in telephones, or speech or image processing software

in laptops and palm-tops. Unfortunately, an application that requires more memory than

is available on a particular device will not be able to run on that device. This makes it

desirable to try and reduce the size of applications where possible. This chapterexplores

the use of object code modification to reduce code size and describes the implementation

and experimental results of a code compressor based onAlto.

Our envisioned application scenario rules out certain compression schemes,de-

scribed in the introduction of this dissertation. Compression that results in aprogram

representation that needs to be decompressed before execution is undesirable fortwo

reasons. First, extra memory is necessary to decompress the program. Second,the time

overhead for decompression may be prohibitively big. Also undesirable are interpretive

schemes because they will slow down execution and require the introduction of some

form of runtime system and possibly changes to the operating system. Hence we makea

tradeoff between compression ratio and execution speed/system complexity.1

1Using profiling information we could take this even further by excluding hot spots in the program
from compression. However, we have not implemented this in our system yet.
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Reductions in code size in our system come from two sources: aggressive (interproce-

dural) application of what are essentially classical compiler analyses and optimizations;

andcode factoring, a term we use to refer to a variety of techniques to identify and “fac-

tor out” repeated instruction sequences. Even though our compression techniques are

applied to object code, they can be quite easily incorporated into compilers capable of

interprocedural code transformations.

The overall structure of the code compressor is depicted in Figure 6.1. It is very

similar to the optimizer described in Chapter 4.

One-time Optimizations’

Base Optimizations’

Base Optimizations’

Code Compression 

Code Positioning

Scheduling

Figure 6.1: Phases of the code compressor based onAlto

Base OptimizationsandOne-time Optimizations have been changed so that op-

timizations that may increase code size are not invoked, e.g., there will be no inlining

except for functions that have only a single call site. A few factoring transformations
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have been added to theBase Optimizationsto reduce code size. The new phaseCode

Compressioncontains the gist of our compression transformations.

The following sections describe the most relevant factoring transformationsper-

formed by the code compressor, and evaluates their effectiveness on the SPECint95

benchmark suite.

Related Work: Much of the earlier work on code compression, aiming at yielding

smaller executables treated an executable program as a simple linear sequence of in-

structions. Early work by Fraseret al. used a suffix tree construction to identify repeated

instruction sequences within such a linear sequence [35]. Such repeated sequences were

then abstracted out into functions. Applied to a range of Unix/VAXutilities, this tech-

nique managed to reduce code size by a factor of about 7% on the average. A shortcom-

ing of this approach is that since it relies on a purely textual interpretation ofa program,

it is sensitive to superficial differences between code fragments, e.g., due to differences

in register names, that may not actually have any effect on the behavior of the code. This

shortcoming was addressed by Baker, using parameterized suffix trees [6];by Cooper

and McIntosh, using register renaming [21] (Baker and Manber [7] discuss a similar ap-

proach); and by Zastre, using parameterized procedural abstractions [77]. The main idea

is to rewrite instructions so that instead of using hard-coded register names, the (register)

operands of an instruction are expressed, if possible, in terms of a previous reference

(within the same basic block) to that register. Further, branch instructions are rewritten,

where possible, in pc-relative form. These transformations allow the suffix tree construc-

tion to detect the repetition of similar but not lexically identical instruction sequences.

Cooper and McIntosh obtain a code size reduction of about 5% on the average using

these techniques on classically optimized code (in their implementation, classical opti-

mizations achieve a code size reduction of about 18% compared to unoptimized code).

Any approach that treats a program as a simple linear sequence of instructions, as in
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the suffix-tree-based approaches mentioned above, will suffer from the disadvantage of

having to work with a particular ordering of instructions and basic blocks. There may

be many reasons why two “equivalent” computations may map to different instruction

sequences in two different parts of a program. The first, and most obvious, is that there

may be differences in register usage and branch labels. Differences in theactual se-

quence of instructions produced may also arise due to instruction scheduling, or because

of profile-directed code layout to improve instruction cache utilization [57].

Our approach to code compression will be somewhat different. Instead of treating a

program as a simple linear sequence of instructions, we work with its (interprocedural)

control flow graph. We use a scheme similar to [7] to identify “similar” basic blocks.

If two blocks that are similar are found to not be identical, we try to rename registers—

using a technique somewhat different from that of Cooper and McIntosh—in an attempt

to make them identical. We use the notions of dominators and post-dominators to de-

tect identical subgraphs of the control flow graph, larger than a single basic block, and

that can be abstracted out into a procedure. Finally, we identify and take advantage of

architecture-specific code idioms, e.g., for saving and restoring specific setsof registers

at the entry to and return from functions.

By showing how “equivalent” code fragments can be detected and factored out with-

out having to resort to purely linear treatments of code sequences *as in suffix-tree-based

approaches), our main contribution is to set up a framework for code compression that

can be more flexible in its treatment of which code fragments are considered “equiva-

lent.” For example, while our current implementation searches for sets of basic blocks

that contain identical instruction sequences, it is straightforward to generalize this com-

ponent of the system to consider use-def chains (cf. Section 3.2), and thereby handle dif-

ferences in the sequence of instructions arising out of instruction scheduling decisions.

Similarly, the treatment of single-entry single-exit regions in Section 6.3.2focuses on
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structural properties of control flow graphs rather than any particular linearization: this

allows it to handle differences in code sequences arising out of profile-directed code lay-

out. We believe that the added flexibility gained from our approach can be useful in

improving the results of code compression. A secondary contribution is to show that

significant reductions in code size can be obtained without having to resort to extraneous

structures such as suffix trees, by using information already available, e.g., the control

flow graph and dominator/postdominator trees.

6.1 Local Factoring

The local factoring transformation was inspired by an idea of Knoopet al. [45]. It tries

to merge identical code fragments by moving them to a point that pre- or post-dominates

all the occurrences of the fragments. We have implemented a local variant of this scheme

which we describe using the example depicted in Figure 6.2.2.

2The meaning of the Alpha machine instructions is explained in Appendix A
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B
stq r7,4(r30)

stq r9,8(r30)
ldq r9,12(r22)

xor r19,r19,r19
stq r9,16(r23)
xor r5,r6,r0

subq r5,r6,r9

ldq r19,22(r22)
stq r9,16(23)

stq r9,16(r23)

C

A

D

E

subq r2,r1,r0

beq r0

addq r5,r6,r8
addq r5,r6,r8
subq r5,r6,r19
stq r19,8(r30)
ldq r19,22(r22)
xor r5,r6,r0

(a) before

stq r7,4(r30)

stq r9,8(r30)
ldq r9,12(r30)

xor r19,r19,r19

subq r2,r1,r0
addq r5,r6,r8
beq r0

ldq r19,22(r30)
xor r5,r6,r0

ldq r19,22(r22)

stq r9,16(r23)

A’

D’

C’B’

E’

sub r5,r6,r19
stq r19,8(r30)subq r5,r6,r9

xor r5,r6,r0

(b) after

Figure 6.2: Local factoring
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The left hand side of the figure shows an assembly code flowchart with a condi-

tional branch (beq r0) in block A. Blocks B and C contain the same instruction ‘addq

r5,r6,r8.’ Since these instructions do not have backward dependencies with any other

instruction in B or C, we can safely move them into block A just before thebeq instruc-

tion, as shown in the right hand side of Figure 6.2. Similarly, blocks B, C, and D share

the same store instruction ‘stq r9,16(r23),’ and since these instructions do not have

forward dependencies with any other instruction in B, C,and D, they can be safely moved

into block E. In this case it is not possible to move the store instruction from Band C into

A because, due to the lack of aliasing information, there are backward dependencies to

the load instructions (ldq) in B and C. In general, however, it might be possible to move

an instruction either up or down. In this case we prefer to move it down sincemoving it

up will eliminate exactly one copy while moving it down might eliminate several copies.

Our scheme uses register reallocation to make this transformation more effective. For

example, thesubq instructions in B and C write to different registers (r9 andr19). We

can, however, renamer9 to r19 in B, thereby making the instructions identical. Another

opportunity rests with thexor instructions in B and C. Even though they are identical we

can not move them into A because they write registerr0 which is used by the conditional

branch. Reallocatingr0 in A to another register which is dead at the end of A will

make the transformation possible. Dead registers can be conveniently found using the

interprocedural register liveness analysis (cf. Section 3.1).

Local factoring is invoked together with the base optimizations. It will not move

instructions that change the flow of control nor will it create new basic blocks. But unlike

factoring schemes described subsequently it might change both the register allocation and

the instruction schedule.
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6.2 Intraprocedural Tail Merging or Cross Jumping

Tail merging is a classical compiler transformation [55]. We describe itusing the example

depicted in Figure 6.3.

stq r7,4(r30)

subq r5,r6,r9

xor r2,r1,r0
beq r0

A

ldq r9,16(r23)

subq r5,r6,r19

C

B

D

stq r9,8(r30)

addq r5,r6,r8

xor r2,r1,r0
beq r0

stq r19,8(r30)

addq r5,r6,r8

(a) before

C D

ldq r9,16(r23)stq r7,4(r30)

AB’

B’A’

stq r19,8(r30)
subq r5,r6,r19

addq r5,r6,r8

xor r2,r1,r0
beq r0

(b) after

Figure 6.3: Cross jumping

We first look for basic blocks likeA andB with a common tail of instructions and

which branch to the same basic block(s). This can be done efficiently by going backwards

and searching the predecessors of a basic block for common tails. A new basic block

AB0 is then created containing the common instruction sequences fromA andB which

are eliminated from their original locations. The shrunken basic blocksA0 andB0 will

branch toAB0.

Tail Merging is invoked together with the base optimizations. It will perform register
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renaming to make tails more similar but does not reschedule them. It only merges tails

of basic blocks within the same function.

6.3 Procedural Abstraction

Procedural abstraction is the inverse operation of inlining (cf. Section 4.4.1).Given a

single-entry single-exit code fragmentC, procedural abstraction ofC involves(i) creating

a procedurefC whose body is a copy ofC; and(ii) replacing the appropriate occurrences

of C in the program text by a function call tofC. While the first step is not very dif-

ficult, at the level of assembly or machine code the second step involves a little work.

Procedural abstraction can in principle be done by a compiler but often the intermedi-

ate representations used in the compiler do not provide enough support for this kind of

transformation. What is needed is the possibility to invoke a subroutine while main-

taining the environment (stackframe and register contents) of the caller. Atthe object

code level such a subroutine invocation mechanism is usually provide by some sort of

“jump-and-link” instruction, that transfers control to the callee and at the same time puts

the return address into a register, but leaves the stackframe and the other registers un-

touched. Liveness analysis (cf. Section 3.1) will usually provide us with several possible

scratch registers to hold the return address. Which one do we choose? A simple method

is to calculate, for each registerr, the number of occurrences of code fragmentC that

could user as a return register. A register with the highest such figure of merit is chosen

as the return register forfC. If a single instance offC, using a particular return register,

is not enough to abstract out all of the occurrences ofC in the program, we may create

multiple instances offC that use different return registers. We use a more complicated

scheme when abstracting function prologs (cf. Section 6.3.3.1) and regions of multiple

basic blocks (cf. Section 6.3.2).



135

6.3.1 Procedural Abstraction for Individual Basic Blocks

Even though a basic block is a special case of single-entry single-exit region, itis handled

separately because we do not require basic blocks to be identical in order to abstract them.

We merely require that they be similar, viz. identical up to register allocation.

In order to determine whether two basic blocks are similar we adapt a technique from

[6] and replace each mention of a register inside a basic block by the distance (measured

in number of instructions) to its definition. These modified basic blocks are then sorted,

yielding a partition of similar basic blocks.3

Next we examine each set of the partition in turn and attempt to convert similar

basic blocks into identical basic blocks. The basic idea is very simple: registers are

renamed “locally,” i.e., within the basic block; and if necessary, register-to-register moves

are inserted, in new basic blocks inserted immediately before and after theblock being

renamed, so as to preserve program behavior. An example of this is shown in Figure6.4,

where the we try to make the similar basic blocks B0 and B1 identical.

3We use a fairly canonical order: first considering the number instructions in the basic block, then the
opcodes, and finally the (transformed) register names
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r0 = r1+1

r5 = r0*r1
r3 = r1-r5
r4 = r5*2

{r1,r2,r6} live

{r3,r4,r6} live

B0

r1 = r0+r2
r5 = r4+1

r6 = r5*r3

B1

r4 = r6*2
r0 = r3-r6

r3 = r5+r2

(a) before

B0
r5 = r4+1
r3 = r5+r2
r6 = r5*r3

r4 = r6*2

B1

r0 = r3-r6

r5 = r4+1
r3 = r5+r2
r6 = r5*r3

r4 = r6*2
r0 = r3-r6

r6 = r20

r4 = r1
r20 = r6

r3 = r0

(b) after

Figure 6.4: Example of basic-block-level register renaming

There are in general three reasons that keep us from simply copying a registerallo-

cation from one basic block to a similar basic block.

� Input registers. The two basic blocks might use registers that were not defined in

the basic block and those might be different. This is exemplified by the use ofr1 in

B0 andr4 in B1, and can be compensated for by a introducing an additional move

instruction ‘r4 = r1’.

� Output registers. The two basic blocks might define registers that are used outside

of the basic block and those might be different. This is exemplified by the defi-

nition of r3 in B0 andr0 in B1, and can be compensated for by a introducing an

additional move instruction ‘r3 = r0’. A subtle point is that we also need to

make sure that the definition ofr0 in B1 corresponding to the definition ofr3 in
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B0 is still available at the end of B1. If not the basic blocks are not really similar,

and therefore we cannot make them identical.

� Live range conflicts. A register which is live through all of B0 might be defined

in B1, thereby destroying a value needed after B0. We compensate for this by

temporarily moving this register into another unused register. This is exemplified

by registerr6 which is temporarily moved intor20.

If none of these problems exists we can indeed copy the register allocation from one

basic block literally to the other. If a problem exists, we have shown how to solve it by

adding move instructions. We keep track of the number of move instructions necessary

and will only add them if there is an overall benefit after abstraction. Notethat the

number of necessary move instructions required to make B0 identical to B1 might differ

from the number of necessary move instructions to make B1 identical to B0, i.e.,the

relationship is asymetric. In order to cope with this we iterate over each set of similar

basic blocks several times, trying to convert similar basic blocks into identical ones. In

the first round we do not allow any move instruction to be added, in the next round we

allow up to one move instruction to be add, then up to two and do on.

It also possible to employ some sort of meet in the middle approach to registerre-

naming, where we do not try to make one basic block identical to another but where we

just try to make them identical by changing both. We have not implemented this scheme

yet.

A different approach to register renaming is described by Cooper and McIntosh [21].

They carry out register renaming at the level of entire live ranges: that is, when renaming

a registerr0 to a different registerr1, the renaming is applied to an entire live range

for r0. This has the advantage of not requiring additional register moves before and

after a renamed block, as our approach does. However, it has the problem that register
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renaming to allow the abstraction of a particular pair of basic blocks may interfere with

the abstraction of a different pair of blocks.

r2 = r3+r0

r1 = r0+r2

r2 = r1*r0

r1 = r0+r1

r3 = r1+r2

r1 = r5+r1

r3 = r1+r2

B3

B5

r1 = r3-r5

r2 = r0+r5

r3 = r5*r4

r2 = r3+r0

r1 = r0+r2

r2 = r1*r0

B4

r1 = r3-r5

r2 = r0+r5

r3 = r5*r4

B6

B0

B1

B2

r0 = load(...)

Live range for r0

Live range for r1

r0 <- r5

r0 -> r5

Figure 6.5: Interference effects in live-range-level register renaming

This is illustrated in Figure 6.5, where solid double arrows indicate identicalbasic

blocks, while dashed double arrows indicate blocks that are not identical but which can

be made identical via register renaming. Blocks B0, B1, and B2 comprise a live range

for registerr0, while B3 and B5 comprise a live range forr1. We can renamer0 to r5 in

the live range forr0, so as to make blocks B1 and B3 identical, but this will cause blocks

B2 and B4 to not be identical and therefore not abstractable into a function. We canalso

renamer5 to r0 in the live range forr1 so as to make it identical to B1, but this will

interfere with the abstraction of blocks B5 and B6. Because of such interference effects,

it is not clear whether live-range-level renaming produces results that arenecessarily

superior to basic-block-level renaming. Notice that the problem could be addressedby
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judiciously splitting the live ranges: indeed, the local renaming we use can be seen as the

limiting case of live-range-level renaming if splitting is applied untilno live range spans

more than one basic block.

Control Flow Separation

The approach described above will typically not be able to abstract two basic blocks that

are identical except for an explicit control transfer instruction at the end. Thereason for

this is that if the control transfers are to different targets, the blocks will be considered

to be different and so will not be abstracted. Moreover, if the control transfer instruction

is a conditional branch, procedural abstraction becomes complicated by the fact that two

possible return addresses have to be communicated.

To avoid such problems, basic blocks that end in an explicit control transfer instruc-

tion are split into two blocks: one block containing all the instructions in the block except

for the control transfer, and another block that contains only the control transfer instruc-

tion. The first of this pair of blocks can then be subjected to renaming and/or procedural

abstraction in the usual way.

6.3.2 Single-Entry/Single-Exit Regions

The discussion thus far has focused on the procedural abstraction of individual basic

blocks. In general, however, we may be able to find multiple occurrences of a code frag-

ment consisting of more than one basic block. We could, of course, factor out each basic

block individually. But factoring out the entire region is more promising. In order to

apply procedural abstraction to such a regionR, at every occurrence ofR in the program,

we must be able to identify a single program point from which control entersR, and a

single program point to which control returns after leavingR. It is not hard to see that

any set of basic blocksR with a single entry point and a single exit point corresponds
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to a pair of points(d; p) such thatd dominates every block inR and p post-dominates

every block inR; conversely, a pair of program points(d; p), whered dominatesp and

p post-dominatesd, uniquely identifies a set of basic blocks with a single entry point

and single exit point. Two such single-entry single-exit regionsR andR0 are considered

to be identical if it is possible to set up a 1-1 correspondence' between their members

such thatB1 ' B0

1 if and only if (i) B1 is identical toB0

1; and(ii) if B2 is a (immediate)

successor ofB1 under some conditionC, andB0

2 is a (immediate) successor ofB0

1 under

the same conditionC, thenB2' B0

2. In order to determine whether two regions are iden-

tical we recursively traverse the two regions, starting at the entry node, and verifying that

corresponding blocks are identical.

After procedural abstraction has been applied to individual basic blocks, we identify

pairs of basic blocks(d; p) such thatd dominatesp andp post-dominatesd. Each such

pair defines a single-entry single-exit set of basic blocks. These sets of basic blocks

are then partitioned into groups of identical regions, which then become candidates for

further procedural abstraction.

To simplify the partition building process we compute a fingerprint for each region

so that regions with different fingerprints will necessarily be different. These fingerprints

are, 64-bit values: there are 8 bits for the number of basic blocks in the region and 8 bits

for the total number of instructions, with the bit pattern11...1 being used to represent

values larger than 256; and the remaining 48 bits are used to encode the first (according

to a particular preorder traversal of the region) 8 basic blocks in the region, with each

block encoded using 6 bits: two bits give the type of the block, and four bits for the

number of instructions in the block. The number of pairwise comparisons of fingerprints

is reduced by distributing the regions over a hash table.

It turns out that applying procedural abstraction to a set of basic blocks is not as

straightforward as for a single basic block, especially in a object code modifyingimple-
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mentation such as ours. The reason is that, in general, when the procedure corresponding

to such a single-entry single-exit region is called, the return address willbe put into a

register whose value cannot be guaranteed to be preserved through that entire procedure,

e.g., because the region may contain function calls. This means that the return address

register has to be saved somewhere, e.g., on the stack. However, allocatingan extra word

on the stack, to hold the return address, can cause problems unless we are careful: allo-

cating this space at the top of the stack frame can cause changes in the displacements of

other variables in the stack frame, relative to the top-of-stack pointer; while allocating it

at the bottom of the stack frame can change the displacements of any arguments thathave

been passed on the stack. If there is any address arithmetic involving the stack pointer,

e.g., for address computations for local arrays, such computations may be affected by

changes in displacements within the stack frame. These problems are somewhat easier

to handle if the procedural abstraction is being carried out before code generation, e.g., at

the level of abstract syntax trees [32]. At the level of assembly code [21, 35] or machine

code (as in our work), it becomes considerably more complicated. There are, however,

some simple cases where it is possible to avoid the complications associated with having

to save and restore the return address when introducing procedural abstractions.Here,

we identify two such situations.

In the first case, if we are given two identical regions(d0; p0) and(d1; p1), wherep0

and p1 are return blocks (blocks from which control returns to the caller), there is no

need to use procedural abstraction to create a separate function for these two regions.

Instead, we can use an interprocedural version of the cross jumping transformation (cf.

Section 6.2). The code in the region(d1; p1) is then simply replaced by a branch tod0.

The transformation is illustrated in Figure 6.6.
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return

d0

p
0

d

p
1

1

return

(a) before

return

d0

p
0

(b) after

Figure 6.6: Merging regions ending inreturns via cross jumping

In the second case, given two identical regions(d0; p0) and(d1; p1) that we would

like to abstract into a procedure, suppose that it is possible to find a registerr that is(i)

not live at entry to either of these regions; and(ii) whose value can be guaranteed to be

preserved up to the end of the regions under consideration (r can be either a general-

purpose register that is not defined within either region, or a callee-saved register that

is already saved and restored by the functions in which the regions under consideration

occur). In this case, when abstracting these regions into a procedurep, it is not necessary

to add any code to explicitly save and restore the return address forp: the instruction to

call p can simply put the return address inr, and the return instruction(s) withinp can

simply jump indirectly throughr to return to the caller.

If neither of these conditions is satisfied, we determine whether the return address

register can be safely saved in memory at entry top, and restored at the end. For this, we

use a conservative analysis to determine whether a function may have argumentspassed

on the stack, and which, if any, registers may be pointers into the stack frame. Given a
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set of candidate regions to be abstracted into a representative procedure, we check the

following:

1. For each function that contains a candidate region, it must be safe, with respect

to the problems mentioned above, to allocate a word on the stack frame of the

function.

2. There must be a registerr0 free at entry to each of the regions under consideration.

3. There must be a registerr1 free at the end of each of the regions under considera-

tion.

4. There should not be any calls tosetjmp()-like functions that can be affected by

a change in the structure of the stack frame.

If these conditions are satisfied,p allocates an additional word on the stack on entry and

saves the return address (passed viar0) into this location; and loads the return address

from this location (usingr1) and restores the stack frame on exit. The current imple-

mentation of the safety check described above is quite conservative in itstreatment of

function calls within a region. In principle, if we find that space can be allocated on the

stack but have no free registers for the return address at entry or exit from the abstracted

function, it should be possible to allocate an extra word on the stack in order to free up a

register, but we have not implemented this yet.

6.3.3 Architecture-Specific Idioms

Apart from the general-purpose techniques described earlier for detecting and abstracting

out repeated code fragments, there are machine-specific idioms that can be profitably

exploited. In particular, the instructions to save and restore registers (the return address

and callee-saved registers) in the prolog and epilog of each function generally have a
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predictable structure because those registers are saved at predictable locations within

the stack frame. For example, the standard calling convention for Digital Unix/Alpha

treats registerra (or r26) as the return address register and registersr9 throughr15 as

callee-saved registers; these are saved at locations0(sp), 8(sp), 16(sp), and so on

wherespdenotes the stack pointer register. Abstracting out such instructions can yield

considerable savings in code size.

The register save/restore instructions in function prologs and epilogs typicallyfollow

the same sequence. In function epilogs this sequence of actions is reversed. However, the

fact that different function prologs carry out a similar sequence of events does not imply

that the same instruction sequences are encountered in the prologs of different functions:

instruction scheduling can, and does, cause other instructions to be interspersed in be-

tween the code to save registers; a similar comment applies to function epilogs. Because

of this, the techniques described earlier, which rely on identifying identicalinstruction

sequences and/or basic blocks, may not always be able to factor out the instructions for

saving/restoring registers in function prologs and epilogs. Instead, they are treated spe-

cially.

6.3.3.1 Abstracting Register Saves

In order to abstract out the register save instructions in the prolog of a functionf into a

separate functiong, it is necessary to identify a register that can be used to hold the return

address for the call fromf to g. Liveness analysis is employed to find such a register.

For each candidate registerr, we first compute the savings that would be obtained ifr

were to be used for the return address for such calls. This is done by totaling up, foreach

function f wherer is free at entry tof , the number of registers saved inf ’s prolog, i.e.,

the size of the prolog. We then choose a registerr with maximum savings, and generate
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a family of functionsSaverr15; : : : ;Saverr9;Saverra that save the callee-saved registers and

the return address register, and then return via registerr. The idea is that functionSaveri

saves registeri and then falls through to functionSaveri�1.

If a function has registerr available before the prolog code, and subsequently saves

registersr9; : : : ; rk, we can replace the prolog by a call toSaverrk.

Save0
14 Save0

9

stq  r15, 56(sp)

stq r14, 48(sp)

stq  r9, 8(sp)

stq  ra, 0(sp)
ret  r0

. . .

0

Save0
14

Save0
9

Save0
ra

Save15

f0:
subq  sp, 32, sp
bsr  r0, bsr  r0, 

subq sp, 40, sp
f1:

Figure 6.7: Example for function prolog factoring

As an example, suppose we have two functionsf0() andf1(), such thatf0()

saves registersr9, : : : , r14, andf1() saves only registerr9. Assume that registerr0 is

free at entry to both these functions and is chosen as the return address register. The code

resulting from the transformation described above is shown in Figure 6.7.

It may turn out that the set of functions subjected to this transformation do not use

all of the callee-saved registers. For example, in Figure 6.7, suppose that none of the

functions using return address registerr0 save registerr15. In this case, the code for the
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functionSave0r15 becomes unreachable and is subsequently eliminated.

A particular choice of return address register, as described above, may not account for

all of the functions in a program. The process is therefore repeated, using other choices

of return address registers, until either no further benefit can be obtained, or allfunctions

are accounted for.

6.3.3.2 Abstracting Register Restores

The code for abstracting out register restore sequences in function epilogs is conceptually

analogous to that described above, but with a few differences. If we were tosimply do

the opposite of what was done for register saves in function prologs, the code resulting

from procedural abstraction at each return block for a function might have the following

structure, with three instructions to manage the control transfers and stackpointer update:

: : :

bsr r1, Restore # call register restore function

addq sp,k,sp # deallocate stack frame

ret ra # return

If we could somehow move the instruction for deallocating the stack frame into the func-

tion that restores saved registers, there would be no need to return to the function f whose

epilog we are abstracting: control could return directly tof ’s caller (in effect realizing

tail call optimization). The problem is that the code to restore saved registers is used

by many different functions, which in general have stack frames of differentsizes, and

hence need to adjust the stack pointer by different amounts. The solution to this problem

is to pass, as an argument to the function that restores registers, the amount bywhich the

stack pointer must be adjusted. Since the return address registerra is guaranteed to be

free at this point—it is about to be overwritten withf ’s return address prior to returning
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control to f ’s caller—it can be used to pass this argument.4 Since there is now no need

for control to return tof after the registers have been restored—it can return directly to

f ’s caller—we can simply jump from functionf to the function that restores registers,

instead of using a function call. The resulting code requires two instructions instead of

three in each function return block:

: : :

move k,ra # sp needs to be adjusted by k

br Restore # jump to register restore function

The code in the function that restores registers is pretty much what one would expect.

Unlike the situation for register save sequences discussed in Section 6.3.3.1, weneed

only one function for restoring registers. The reason for this is that there is no need to

call this function: control can jump into it directly, as discussed above.

[note that this is essentially cross jumping but interprocedurally and with a param-

eter - the stack size]. This means that we do not have to generate different versions of

the function with different return address registers. The overall structure of the code is

analogous to that for saving registers: there is a chain of basic blocks, each of which

restores a callee-saved register, with control falling through into the next block, which

saves the next (lower-numbered) callee-saved register, and so on. The last member of

this chain adjusts the stack pointer appropriately, loads the return address intoa register,

and returns. There is, however, one minor twist at the end. The amount by which the

stack pointer must be adjusted is passed in registerra, so this register cannot be overwrit-

ten until after it has been used to adjust the stack pointer. On the other hand, since the

memory location from whichf ’s memory address is to be restored is inf ’s stack frame,

4In practice not all functions can be guaranteed to follow the standard callingconvention, so it is
necessary to verify that registerra is, in fact, being used as the return address register byf .
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we can’t adjust the stack pointer until after the return address has been loaded into ra.

We get around this problem using the following instruction sequence:

: : :

addq sp, ra, sp # sp := sp + ra � new sp

subq sp, ra, ra # ra := sp - ra � old sp

ldq ra, 0(ra) # ra := return address

ret ra

The resulting code for restoring saved registers, for the functions considered in the ex-

ample illustrated in Figure 6.7, is shown in Figure 6.8.

. . .

15

14

9

ra

ldq  r15, 56(sp)

ldq r14, 48(sp)

ldq  r9, 8(sp)

Restore

Restore

Restore

Restore

ldq   ra, 0(ra)
ret    ra

addq sp, ra, sp
subq sp, ra, ra

move 40, ra
f1:

to f1’s caller(s)to f0’s caller(s)

move 32, ra
f0:

Figure 6.8: Example for function epilog factoring

We go through these contortions in order to minimize the number of registers used.

If we could find another register that is free at the end of every function, we couldload

the return address into this register, resulting in somewhat simpler code. However, in
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general it is not easy to find a register that is free at the end of every function. Moreover,

since there is only one function that restores saved registers in the transformed code,

the overall savings from this, even if we could find such a free register, would not be

very significant. Compared to the obvious implementation described at the beginningof

this subsection, the resulting code reduces the number of instructions necessary at each

function return block from three to two, i.e., with a net savings of one instruction, at

the cost of introducing three additional instructions into the function that abstractsthe

register restore instructions. It is therefore able to achieve a net savings, compared to

the obvious implementation, if there are at least four functions in the program whose

register restore actions can be abstracted as described above. The reason we go to such

lengths to eliminate a single instruction from each return block is that thereare a lot

of return blocks, amounting to about 4%–8% of the basic blocks in a program (there is

usually at least one—and, very often, more than one—such block for each function). The

elimination of one instruction from each such block translates to a code size reduction

of about 1%–2% overall (this may seem small, but to put it in perspective, consider that

Cooper and McIntosh report an overall code size reduction of about 5% using suffix-tree

based techniques [21]).

6.4 Experimental Setup

For the experimental evaluation we used the 8 programs from the SPECint95 benchmark

suite [65]. The benchmarks were compiled with the DEC C compiler V5.2-036 invoked

ascc -O1, which is the highest optimization level, that does not perform code size

increasing transformations. Additional linker options (-d -z -r -non shared )

were needed to retain relocation information and produce statically linked executables.5

5We use statically linked executables becauseAlto relies on the presence of relocation information
for the control flow graph construction. The Digital Unix/Alpha linker ld refuses to retain relocation
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No execution frequency profiles were used. The execution times reported weregenerated

using the benchmark reference inputs. The timings were obtained on a lightly loaded

DEC Alpha workstation with a 300 MHz Alpha 21164 (EV5) processor with a split

primary cache (8 kB each of instruction and data cache), 96 kB of on-chip secondary

cache, 2 MB of off-chip backup cache, and 512 MB of main memory, running Digital

Unix/Alpha V4.0B (Rev. 564). In each case, the execution time reported is the smallest

time of 10 runs.

6.5 Experimental Results

Table 6.1 compares, for each benchmark, the code size for the original (unoptimized)

version (Column 2), theAlto optimized version using the regular optimizer without

Program cc (kB) [norm] Alto (kB) [n.] Alto’ (kB) [n.] Fac. (kB) [n.]

compress 99 [1.000] 68 [0.691] 64 [0.651] 61 [0.612]

gcc 1362 [1.000] 1083 [0.796] 1032 [0.758] 972 [0.714]

go 341 [1.000] 278 [0.816] 266 [0.779] 254 [0.744]

ijpeg 262 [1.000] 186 [0.713] 178 [0.682] 166 [0.636]

li 179 [1.000] 115 [0.647] 110 [0.615] 101 [0.568]

m88ksim 228 [1.000] 162 [0.709] 152 [0.666] 142 [0.621]

perl 435 [1.000] 324 [0.745] 309 [0.710] 282 [0.650]

vortex 696 [1.000] 410 [0.589] 391 [0.562] 374 [0.538]

Geom. Mean [1.000] [0.710] [0.674] [0.632]

Table 6.1: Impact of code compression on code size

information for non-statically-linked executables.
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profiles (Column 3), theAlto optimized version where code growing optimizations have

been disabled (Column 4), and the smallest possible version using the factoringtransfor-

mations (Column 5). Normalized numbers relative to Column 2 are also presented.

Using the factoring transformations we can reduce the code size by 36.8% in the

average compared to the original. Of the this reduction 4.2% is due to factoring while

the rest is due to optimizations performed byAlto.

Table 6.2 has the same structure as Table 6.1 but compares execution times instead of

code sizes. As expected, the extra reduction in code size due factoring is obtainedby a

small penalty (7.5%) in execution time. However, on the average we are still 7.9% faster

than the original executable.

Program cc (sec) [norm] Alto (sec) [n.] Alto’ (sec) [n.] Fac. (sec) [n.]

compress 321.3 [1.000] 281.4 [0.876] 284.6 [0.886] 289.4 [0.901]

gcc 262.1 [1.000] 257.2 [0.981] 252.8 [0.964] 260.6 [0.994]

go 360.0 [1.000] 298.0 [0.828] 299.4 [0.832] 317.5 [0.882]

ijpeg 327.1 [1.000] 324.1 [0.991] 329.3 [1.007] 330.1 [1.009]

li 312.0 [1.000] 265.0 [0.849] 260.2 [0.834] 314.7 [1.009]

m88ksim 400.3 [1.000] 272.2 [0.680] 287.2 [0.717] 289.8 [0.724]

perl 257.0 [1.000] 214.4 [0.834] 209.3 [0.814] 230.6 [0.897]

vortex 470.4 [1.000] 351.9 [0.748] 359.1 [0.763] 425.5 [0.904]

Geom. Mean [1.000] [0.843] [0.847] [0.910]

Table 6.2: Impact of code compression on execution time
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CHAPTER 7

FUTURE WORK

The research described in this dissertation suggests several avenues forfuture work.

The most obvious of these would explore extensions to optimizations and code compres-

sion transformations.

Especially in the area ofprofile guided optimizationsvery few advances have been

made that have proven to be beneficial enough to be incorporated into a production qual-

ity compiler. We believe that this is mostly due to the already mentioned “impedance

mismatch” between the easily available low level profiling informationand the high

level intermediate representation inside most compilers. This problem does notexist

in Alto which should make it an ideal platform for further studies with profile guided

optimizations.

A related issue isresource guided optimizations. Many compilers perform optimiza-

tions such as inlining and loop-unrolling without (or very little) regard for the available

resources of the underlying machine. This can lead to unexpected and counter-productive

results. For example, excessive inlining can increase the amount of code that isexecuted

frequently (the working set) beyond the size of the instruction cache thereby increasing

cache misses and degrading performance. The same problem arises with loop-unrolling.

An infamous example is the SPEC95 benchmarkfpppp which contains loop that has

been manually unrolled. This unrolled loop which accounts for most of the cycles spent

in the benchmark results in a basic block with over 8000 instructions — far exceeding the

instruction cache size. This suggests to leave such potentially harmful transformations
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to an optimizer, likeAlto, that works on a very low level, where it is easier to estimate

resource usage

There are several interesting enhancements to guarded code specialization:

� Instead of specializing for the value with the highest benefit at a certain (program

point, register) pair. We could specialize for then most beneficial values, possibly

inserting a sequence of tests to dispatch for the actual value.

� Quite often several registers might have a very skewed value distribution at a pro-

gram point or the conditional distribution of values might be skewed. So instead

of profiling for one register at time, we might want to simultenously profile several

registers. This will require a scheme for computing combined benefits when the

contents of several registers are known.

� We have already hinted that our value based profiling/specializion is just a special

case of the more general predicate based profiling/specializion. The automatic

computation of useful predicates to profile for seems challenging but promising

extension.

Our current implementation of code compression on the object code level does not

cope with scheduling very well. Only prolog/epilog factoring and local factoringare

effective in the presence of rescheduled instruction sequences. It would be nice to ex-

tend basic block factoring so that not just basic blocks which are identical up to register

reallocation but also basic block which are identical up to instruction scheduling can

be factored. This might be a difficult task, since we probably have to compute the de-

pendence graph of the instructions in each basic block and then search for isomorphic

graphs. It would also be nice to extend this to the sub-basic block level allowingfor

factoring of parts of basic blocks.
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APPENDIX A

ALPHA MACHINE INSTRUCTIONS

Instruction Effect

ldq ra,n(rb) load the quadword (8 bytes) at addressn+ rb into ra

ldl ra,n(rb) load the longwordd (4 bytes) at addressn+ rb into ra

stq ra,n(rb) store the quadword inra at the addressn+ rb

stl ra,n(rb) store the longword inra at the addressn+ rb

lda ra,n(rb) compute the address (value)n+ rb into ra

and ra,rb,rc compute the bitwise and ofra andrb into rc

bis ra,rb,rc compute the bitwise or ofra andrb into rc

xor ra,rb,rc compute the bitwise xor ofra andrb into rc

slr ra,rb,rc shift ra rb bits to the right intorc

sll ra,rb,rc shift ra rb bits to the left intorc

move ra,rb movera into rb

addq ra,rb,rc compute the sum of the quadwords inra andrb into rc

addl ra,rb,rc compute the sum of the longwords inra andrb into rc

subq ra,rb,rc compute the difference of the quadwords inra andrb into rc

subl ra,rb,rc compute the difference of the longwords inra andrb into rc

mulq ra,rb,rc compute the product of the quadwords inra andrb into rc



155

Instruction Effect

br label branch unconditionally to label

jmp (ra) branch unconditionally to the address inra

ret ra return to the address inra

bsr ra,label call the subroutine at label,

storing the return address intora

jsr ra,(rb) call the subroutine at the address inrb,

storing the return address intora

beq ra,label branch to label ifra = 0

bne ra,label branch to label ifra 6= 0

bge ra,label branch to label ifra� 0

cmpeq ra,rb,rc setrc to 1 if ra = rb, 0 otherwise

cmpne ra,rb,rc setrc to 1 if ra 6= rb, 0 otherwise

cmpult ra,rb,rc setrc to 1 if ra < rb, 0 otherwise

Register Synonym Usage

r0 v0 subroutine result

r1� r25 general purpose

r26 ra return address for subroutine call

r27 pv subroutine address for subroutine call

r28 general purpose

r29 gp pointer into constant pool (global pointer)

r30 sp stack pointer

r31 zero hard wired to zero
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