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This dissertation describég t 0, a platform for object code modification for Digital
Unix/Alpha executables. Object code modification, also called binary iagyiallows
us to change compiled and linked programs, thereby extending the process of code gen-
eration well past the compilation phase of a program.

Object code modification is becoming increasingly important. One reason for this
is the recent trend of making programs available as executables only — without the
corresponding source code.

We explain the difficulties encountered by object modification, especially iartee
of program analysis, and show how they are dealt witAliho. Several improvements
to register liveness analysis are presented.

Al t 0 has been used to implement an optimizer which allows us to evaluate the ben-
efits of classical compiler optimizations when applied to object code. Thisneti

outperforms the vendor-supplied optimization tools significantly.



Al t o has also been used to instrument programs in order to generate sophisticated
execution profiles, such as value profiles. We show how such profiles can belpyofita
exploited using a novel technique — guarded code specialization — and how this opti-
mization can be incorporated into the optimizer.

Finally, we consider the issue of code compression, i.e., usliig to make pro-
grams smaller rather than to make them faster. A variety of transtions are presented

which are able to reduce the code size of programs substantially.
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ABSTRACT

This dissertation describé$ t 0, a platform for object code modification for Digital
Unix/Alpha executables. Object code modification, also called binary iagyriallows
us to change compiled and linked programs, thereby extending the process of code gen-
eration well past the compilation phase of a program.

Object code modification is becoming increasingly important. One reason for this
is the recent trend of making programs available as executables only — without the
corresponding source code.

We explain the difficulties encountered by object modification, especially iardee
of program analysis, and show how they are dealt withAliho. Several improvements
to register liveness analysis are presented.

Al t o0 has been used to implement an optimizer which allows us to evaluate the ben-
efits of classical compiler optimizations when applied to object code. Thisnet
outperforms the vendor-supplied optimization tools significantly.

Al t 0 has also been used to instrument programs in order to generate sophisticated
execution profiles, such as value profiles. We show how such profiles can belypyofita
exploited using a novel technique — guarded code specialization — and how this opti-
mization can be incorporated into the optimizer.

Finally, we consider the issue of code compression, i.e., usliig to make pro-
grams smaller rather than to make them faster. A variety of transttwns are presented

which are able to reduce the code size of programs substantially.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

This dissertation is about direct modifications of object code. Such modifications ma
occur either at a very late stage during linking (link time) or after linking {(piok
time). Both approaches are quite similar: integrating modifications witt@inker will
simplify parsing of the code and might give access to slightly more informabonta
the code, while changing object code after linking provides a very clean sepavétion
responsibilities and does not require access to potentially proprietary Bokece. In
what follows we will not distinguish between the two approaches.

Traditionally, it is the task of the compiler or assembler to generate objele and
it seems complex and cumbersome to change object code once it has been produced.
Nevertheless, the number of applications where object code modification is Sudlges
employed grows rapidly. This is partly due to the fact that computers are begomi
powerful enough to cope with the often quite high resource demands of object code
modification.

The following list describes the most popular applications of object code modifica-

tion.

Customization Most software vendors ship software in executable form. Because of the
high maintenance and testing cost there is a reluctance to produce more than one

version of an executable for any one platform. To ensure that the software works
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on all systems, the vendors aim their executables at the lowest common denomina
tor of the architecture. However, the systems the software runs on might be quite
different, their CPUs might have slightly different instruction setsheasizes,
pipelines, functional units, even the number of CPUs might be different. Consider,
for example, the Windows 95 operating system which runs on such different CPUs
as: x486, Pentium, Pentium Pro, Pentium II, Pentium Ill, Pentium Celeron, AMD
K6-2, AMD K6-3, Cyrix M-2, etc. However, there is only one version of this
software available. As another example consider the Alpha family of CPUdwhic
used to lack instructions for loading/storing individual bytes and words. Instead,
instruction sequences were used to emulate these elementary operatioest Re
members of the CPU family have load and store instructions for bytes. A typical
software vendor will most likely compile his programs not using the new instruc-
tions to ensure that his software runs on all CPUs. Consequently, users weath sta

of the art systems experience suboptimal performance.

Object code modification can help customizing a program by making use of new
features of the CPU when those are present in a system without requiring recom-

pilation or waiting for new compiler releases supporting these features.

Customization usually leads to faster programs. However, one could imagine a
situation were the example above is reversed, and in which we are pikgetite

executable code compiled for the latest member the Alpha CPU family. We want
to run it on an old version of the CPU, no longer supported by the software vendor.
We can use object code modification to replace all the instructions which load and

store bytes or words with emulating instructions.

Customization can also be used in combination with profiling to tune a binary for

common input data and program usage. Suppose a certain user mostly exercises
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the spell checker and the display rendering portion of a word processor. It would be
beneficial to reorder those components within the program to reduce the likelihood
that they conflict in the instruction cache. Furthermore, assume that thsnpers
almost exclusively uses the Times font in his word processor documents.yClearl
this will change the behavior of the display rendering code: certain branches will
or will not be taken with higher probability and certain values will be moreljik

to populate certain registers. Adapting the display rendering code for this common
case — possibly at the expense of slowdowns for the uncommon case (e.g., the

Helvetica font) — might be greatly beneficial to this particular user.

Binary Translation Taking customization to the extreme, we can attempt to translate
the object code to run on a different platform. A few such translators have been
implemented commerciallfgX! 32 is a Windows NT/x86 to Windows NT/Alpha
translator [15] , Freeport Express is a Solaris/Sparc to Digital Unix/Alpdoast
lator [71], VEST translates OpenVMS/VAX to OpenVMS/Alpha [70, 64], amk
translates Ultrix/Mips to Digital Unix/Alpha [70, 64].

Binary translation is also useful for the fast emulation of a new or fictitmat
form before actual hardware is available, allowing compiler writemsgkample,

to test their code generator in advance.

Binary translation often requires a runtime software emulator for the splace
form, in order to cope with code that is generated on the fly and which cannot
be statically translated. A translation that falls back to an emufatdhe source
platform is called hybrid translation. The above mentioned FX!32 systemlctua
uses emulation by default and will apply binary translation only to the frequently

executed portions of a program in a separate offline step.

Translators can obviate the need for porting software if one is willing to lpay t
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price of a small performance penalty.

Program Analysis/Profiling Program analysis and profiling tools are the most popular
applications for object code modification. Tools that instrument programs to deter-
mine basic block execution frequencies are very common. This information can be
used by the compiler for profile-driven optimizations, by developers to help them
focus their tuning efforts on the relevant parts of the code. Architects might use
profiling to determine the dynamic instruction mix of applications or their data and
instruction cache behavior [75, 47]. Other tools instrument the code to examine the
accuracy of branch predictions or scheduling decisions made by the compiler with-
out the use of special hardware (such as bus monitoring systems) or simulation. A
common class of tools instrument object code to obtain address traces, which help
architects improve cache design. These traces are very large, ofteméngsev-
eral gigabytes of disk space. Instead of writing them to disk and processing them
offline, a recent trend adds the processing code to the object code and invokes
it whenever a new piece of trace information would normally be written to disk.
While the first approach typically causes the instrumented program to run about
100 times slower [49], the second approach reduces this slowdowns to a factor of

10 [66].

There are, of course, other ways of obtaining profiling information. One is to make
the compiler instrument the code [38], and another is to use statistical methods [4]
Instrumenting code at a higher level than object code may not yield accurate in-
formation of the type computer architects care about, and it also critidadigges
the program behavior that we want to analyze (analogously to “Heisenberg’s un-
certainty principle” in physics). Statistical methods, on the other hand, soeet

have problems with accuracy.
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Debugging Object code modification also has a wide range of useful applications in
debugging. Suppose that because of a programming error a memory cell is acci-
dentally overwritten. Locating the point where the overwrite occurs canMeeya
difficult task. If there is no hardware support on the CPU we could resort to mod-
ifying the compiler to add checks, but this would be slow and libraries would not
be covered. Another approach which has been used in the past and which is also
rather slow is to single step through the program, continuously checking whether
the memory cell has changed. A more efficient solution is to modify the object
code to add checking code before each write instruction that will trap on @ twrit

the memory cell in question.

Purify uses object code modification to detect memory leaks, out of bounds mem-

ory/array accesses, and use of uninitialized data [40].

Ji Tl , A debugging aid with a somewhat different flavor, inserts instrumentation
code before load and store instructions in a parallel program which will agsatre t
these loads and stores occur in a formerly observed order. This enables determi
istic replays in (shared memory) parallel environments which is a greptihel

reproducing bugs [62, 61].

Software Fault Isolation (Sandboxing) Software fault isolation is closely related to the
debugging techniques mentioned above. We describe a scenario from [72]: Sup-
pose we have a piece of untrusted object code which we want to link with trusted
code. One concern is that the piece of untrusted code might accidentally modify
data structures maintained by the trusted code and hence corrupt the system. To ad-
dress this problem we could assign the untrusted code to its own segment within the
applications address space, and add checking code before each read/write instruc

tion. The checking code will trap on a read/write attempt outside of the segment.
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The overall effect is very similar to that which Java achieves &itombination

of type checking and runtime checks.

Another application is the prevention of certain security attacks that exjiter
overflows on the stack. Most attacks exploit buffer overflows inside the pregra

to (a) create a subroutine that spawns a root shell on the stack (b) oveiverite t
return address in the current stack frame with the start address of theareaded
subroutine. We can prevent this attack by inserting checks before each indirect
control transfer j(unp, r et ur n), to validate that the address being jumped to

lies in a valid range.

Code Optimization Intuitively, code optimization should be the domain of the com-
piler, since it has access to high level information such as data typesplcsintic-
tures, alias information, etc., which greatly aids in generating effidede and
which is not readily available at the object code level. So why bother optimizing

object code?

e We want to be compiler/language independent.
Working with object code makes our optimizations essentially compiler and
language independent, similar to a common back end used with several front
ends. However, we still may need to recognize certain compiler and/or lan-
guage specific idioms at the object code level (like computed jumps) and treat

them specially, in order to improve the effectiveness of the optimizations

e We want to add a new optimization to a compiler.
Often we do not have access to the compiler source. Or, the documentation
of the compiler source is so poor that adding the new optimization might be

difficult. Hence, itis very popular to try out new optimizationsin a simple and
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well documented compiler likecc [34] whose source is publicly available.
However, it is questionable whether results obtained in this way will teans

to a production quality compiler. Applying optimizations at link time, on the
other hand, allows us to essentially add optimizations to the best available

compiler without modifying it.

The program source or parts thereof (libraries) are unavailable.

Especially for old programs (legacy software), source code is often unavail-
able or it is unclear which version of the source corresponds to the program
we want to optimize. Optimizing the object code appears to be the only way

to improve performance of these programs.

The optimization cannot be easily performed at compile time.

Consider the case where we want to improve the control transfer (jump) code
for subroutine invocations. Depending on the distance of the jump (in number
of bytes), different jump instructions can be chosen, a pc-relative jump with
short displacement, a pc-relative jump with long displacement, or an absolute
jump. Unfortunately, the compiler is usually not able to estimate the jump
distance, and hence needs to pick the most conservative and hence suboptimal
instruction, viz. the absolute jump. At link time, on the other hand, we know

exactly what the jump distance is and can pick the optimal instruction.

We want to perform whole program optimization.
Whole program optimization can, in theory, be done at compile time but this
is often hindered by missing source for library code. This problem does not

exist for statically linked object code.

We want to utilize profiling information obtained at the object code level.

Generating profiling information by instrumenting object code is very popu-
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lar and, because of tools likd om(cf. 1.2), also fairly easy. The problem is

to exploit this information in an optimizing compiler. There is an “impedance
mismatch” between the information provided by the object code level profil-
ing and the source level compiler. This “impedance mismatch” problem is
also found in a source level debugger. Such a debugger actually works at the
object code level, but needs to back map the information to source code. This
is a hard problem — especially when the code is highly optimized. When op-
timizing at the object code level, on the other hand, the mapping is one-to-one

and does not present any problems.

Code Compression/CompactionWhile the cost metric we tried to reduce in the pre-
vious cases was time, we may also be concerned about space. Besidealclassic
optimizations which usually also reduce code size, we can reduce code size using
special compression techniqgues. Compressed code must either be decompressed
before execution (called wire representation) [31] or it can be executidbuti
decompression [35, 21]. The first method results in a smaller compressed rep-
resentation than the second, but requires the overhead of decompression before
execution. This overhead may be negligible and in fact maybe compensated for by
the savings in transmission or retrieval cost. A more severe problem, bowgv

that it requires space for the decompressed code.

The second method preserves executability of the code and is therefore more
amenable to object code modification even though the borders between the two
methods are somewhat flowing. If we prepend a piece of code to the wire repre-
sentation that first performs decompression and then runs the decompressed ex-
ecutable, we have technically preserved executability. Tools likewtare very

popular when computers were not equipped with hard disk drives and one tried to
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cram as much information as possible onto floppy disks [59].

It is also possible to add some sort of interpretive techniques to an exextaabl
reduce space requirements. For example, on the Motorola 68000 based Atari ST
computer the designers were not able to fit the entire operating system into the 192
kB ROM. So they replaced common opcode sequences with illegal instruétions

and installed an interpretor to handle the illegal instruction exceptions [42].

A similar but less system specific mechanism factors common code sequeoces i
subroutine calls [35, 27, 21]. This can in principle be done by a compiler but
often the intermediate representations used in the compiler do not provide enough
support for this kind of transformation. In addition, more of the code is visible at

link time, e.g., libraries, increasing the number of opportunities for factoring.

This dissertation describé$ t o (A Link Time Optimizer), a platform for modifica-
tion of object codeAl t o has been implemented for Digital Unix/Alpha executables and
is being ported to Linux/Alpha. The main emphasis of the dissertation will be octobje
modification for optimization, code compression, and profiling.

Despite being a fairly system specific piece of software, the experiencedyaith
Al t o should be transferable to other platforms/architectures (especially BiSed sys-
tems) since the Alpha is a very generic RISC CPU. In fact, its insbmdet is very
similar to low level code representations such as ILOC [58], LIR [55], anthiDode

[73, 1] so thatAl t o could also be viewed as a backend for monolithic compilation.

1The illegal instructions were taken from a pool of reserved opcodes caifesf because the first
hexadecimal digit of each opcode was “f”. Later those opcodes became legal floaitimgngtructions
and the scheme was abandoned.
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1.2 Related Work

This section describes other projects in the area of object code modification ausl poi

out their differences froml t o.

OM

OMis an optimizer for executables initially implemented for DEC-statiamsing Ul-
trix/Mips, and later ported to Digital Unix/Alpha.

OMwas designed as a separate pass after linking but, uillike relies on the linker
to provide additional information not found in the executali®can also make use of
profiling information [67, 68].

One of the design goals f@Mhas been to make it fairly light-weight. Compared to
Al t o, itdoes not perform many optimizations, and the ones it does perform are sgbtrict
to those that do not consume a lot of resources. The following is a list of optionzati

performed byOM

e Code size reduction by unreachable code removal

e Compaction of the memory area that holds compile time constants by elimination

of unused and duplicate constants
e Reordering of global data structures (variables) to provide more efficieasacc
¢ Profile guided code positioning and alignment
e Instruction (re-)scheduling
e Peephole optimization

e User-directed procedure inlining
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ATOM

At om (Analysis Tool withOM is an instrumentation tool generator for the Digital
Unix/Alpha platform which originated in th&M project but has since then diverged.
At omis a very mature and user-friendly tool which is used extensively inside (DB®
COMPAQ). It has been used for many big applications including OS kernels [66].

At omstrictly separates the tool specific part from the common infrastructuckedee
by all tools. The tool specific part consists of an analysis component and an instrumen-
tation component. Both components can be written entirely in a high level language
(typically C), which distinguisheat omfrom any other tool, including\ t o.

The instrumentation code is linked with tA& ominstrumentation engine to create
an instrumentation tool. This tool will parse an executable and insert funcalis at
specific places via th&t omAPI. The functions called are those defined in the analysis
code. Calls to these functions can be inserted before/after program exesh@ned
library loading, procedures, basic blocks, or instructions. The parameters pasksed
functions are determined by the instrumentation code. Possible parametessrazat
register values, instruction fields, symbol names, addresses, etc.

At omeven allows the analysis code to dynamically allocate memory. This is non-
trivial because memory allocated by the analysis code should not be visible to the in-
strumented program in order to preserve program behavior as much as possibie i.e., t
values returned by calls toal | oc() should be the same in the original and in the
instrumented version of the program.

Registers modified by an analysis routine are saved to the stack andelsttaned.
Some attempts are made to reduce this overhead but it is still quite sagmifierograms
instrumented usingt ompi xi e (see below) typically suffer a slowdown of a factor of

2 to 3.
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Among the tools that have been (re-)implemented witbmare:

e pi xi e. A reimplementation of a basic block execution frequency profiling tool.
The profile generated by pixie is used Gito guide some of its optimizations

[69, 75].
e Third Degree. A memory leak detection tool.

e Hi prof . A performance analysis tool that collects data similar to, but more accu-

rate thangpr of .

SPIKE

Spi ke is an adaptation oOMto the Windows NT/Alpha platform.Spi ke consists
of an instrumentation part and optimization part. Both are embedded i8ghke
optimization environment (SOE), which transparently handles the task ottnteand
managing profiling information for the user [18, 17, 36].

Spi ke is aimed at call intensive programs, with loops that span multiple procedures
and procedures that have complex control flow and contain numerous basic blocks.

The instrumentation part is@@ xi e adaptation which provides basic block and con-
trol flow edge execution frequency counts. A minimum of basic blocks and edges are
instrumented and register liveness analysis is used to find free scegiiskers for the
instrumentation code. The instrumentation code bloat is thereby only 30%. There are
plans to replace the instrumentation part by statistical sampling using [2{CP

Spi ke automatically scans the executable for the dynamically linked libraries
(DLLs) it uses and processes them as well.

The important transformations performed by the optimization part are profiterdri

e Pettis-Hansen style profile guided code placement [57] improves instructibe ca

performance.
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e Hot cold optimization (HCO) reduces the length of the most frequently executed

paths in a procedure.

Spi ke reportedly speeds up program execution by as much as 33%, which seems
to be mostly due to the profile guided code placement. The HCO optimization benefit is
unclear since no execution time improvements are repodpdke seems to be most
effective with call intensive programs. Programs that spend a significamtiat of time
in inner loops, e.g., FORTRAN programs, usually get very little speedup. Compared t

Al t o very few optimizations have been implemented.

EEL

EEL (Executable Editing Library) is a C++ library that tries to hide much of thaplex-
ity and system specific detail of editing executables. It was developée atriiversity
of Wisconsin-Madison and runs on Solaris/Sparc and Ultrix/Mips. [48]

EEL tries to be as system and machine independent as possible. Theoretically, tool
builders should be able to modify an executable without being aware of the detiés of
underlying architecture or operating system, or being concerned with the consequences
of deleting instructions or adding foreign codeEL’s programming interface is not as
high level asAt ormis but the programmer has more control over the instrumentation pro-
cess sincé&t omcan only insert subroutine calls and not modify existing instructions. As
an intermediate representati&&L employs a machine independent RISC-like abstract
instruction set. However, instrumentation code (called snippets) cerfistoncrete
instructions that must be rewritten in machine language for different artmésc A
register scavenging scheme that takes advantage of calling conventiond i® yse-
vide the scratch registers for the snippets, and to reduce the amount of rggititey.s

Hence the snippet defined by the tool writer and the actual code added as instruomentati
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to an executable might differ in the allocation of registers. If other chaagewanted,
e.g., adjustments of offset/displacements, the tool writer needs to back-patshippet
just before it is added to the binary. The number of instructions is not allowed tyeha
at this point.

EEL does not use relocation information and falls back to runtime code when static
analysis is insufficient. This also prevents the user from editing certaic béocks
(typically 15-20% of all basic blocks) which are excluded from instrumentation. The
authors claim that in most case alternative basic blocks can found and editead. For
this reasorEEL is a instrumentation platform rather than optimization platform.

EEL has been used to reimplement teandgpt tools [8] which are used to obtain

path profiles.

Etch

Et ch is a binary modification tool for Windows NT/x86 executables. It was developed
jointly at the University of Washington and Harvard University and ithaecture was
strongly influenced byAt om Like At omit separates instrumentation from analysis. To
instrument a progrankt ch is invoked with the name of an executable and a dynami-
cally linked library (DLL). The DLL contains the analysis code in the form alflzack
functions that are invoked bigt ch to modify the executable. Those functions can in
turn call theEt ch API to perform the actual instrumentation [60].

Et ch includes a runtime library with the modified executable which might make it
less suitable for optimizations. The only reported optimization is code layoud lnese
the Pettis-Hansen algorithm [57]. Lil8pi ke it can handle dynamically linked executa-

bles and will instrument/optimize DLLs used by a program.
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1.3 Contributions of Alto

Al t o has been implemented in the C programming language and works reliably on
all programs tested. The software can be downloaded free of charge froA tloe
webpagéhttp://www.cs.arizona.edu/alto/

The main contributions are listed below.

1. Program analysis (Section 3)

We present several improvements to register liveness analysis. \Wehsivoto
preserve correctness of the analysis in the presence of control flow anorpadies t
ically not encountered in high level languages but frequently observed in object
code. A novel insight about the fixpoint equations for the analysis is exploited to
speed up its computation time by 25%. We also show how the consideration of
calling conventions and callee saved registers decreases the humber i&ghv
isters. Furthermore, We examine space-time tradeoffs and spacefttision

tradeoffs.

2. Classical compiler optimizations (Chapter 4)

We evaluate the usefulness of an extensive set of classical compiler zaitons

in the context of link time code modification. Common sense suggests doing clas-
sical compiler optimization in the compiler. However, we find significantojza-

tion opportunities at link time. Programs optimized with our system typicalty r

6% faster than those produced with the vendor-supplied compiler infrastructure

alone.

3. Common case specialization (Chapter 5)

We discuss guarded code specialization, a new optimization based on value pro-

files, which could also be incorporated into ordinary compilers. We show how to
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select program points for value profiling and present a cost-benefit analysis to au-
tomatically determine which of those program points are to be specializedhfdr w
value. Guarded code specialization results in an additional speedup of up to 10%

for some programs.

. Code compression (Chapter 6))

We examine opportunities for code size reduction via object code modification.
Using code factoring transformations on top of classical compiler optiroizsiti

we are able to reduce code size by 38% on the average.
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CHAPTER 2

OVERVIEW OF THE ALTO SYSTEM

Object code modification is a three phase process consisting of :

e Parsing — transformation of the object code into an intermediate repraeantat
e Editing — manipulation of the intermediate representation

e Code Generation — transformation of the intermediate representation back int

object code

In this chapter we will discuss these phases, describe the common problems encoun-
tered, and show howl t o handles them.

We assume a generic Unix executable format depicted in Figure 2.1 [39]. Basides
file representation, the runtime organization in memory is also shown.

The Program Header contains offsets and sizes of the segments and tablesrand thei
location in the address space. It also contains the code address where exaautson
The Text Segment contains read-only data, i.e., the program code and constants. The
Data Segment contains initialized data that is read/writable. The B§®&e# contains
zero initialized read/writable data and is therefore reduced to anssisize pair in the
file representation. The Relocation Table contains information which allswschange
the program to run at different absolute positions in the address space. The Symbol Ta-

ble contains information traditionally used by a debugger to establish a corresigende
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between the source code and the object code derived from it. The symbol table is op-
tional and can be removed from the executable usingtha p command. If present,

Al t o will use it to make its output more user-friendly. For example, instead of tiegor

that “the subroutine at address 0x120003ac has been inlined”, the message “subroutine

mencpy has been inlined” will be printed.

File Memory

Program Header Text Segment
Text Segment Data Segment
Data Segment BSS Segment

Relocation Table

Symbol Table

Figure 2.1: Generic executable format

2.1 Parsing

The task of parsing is to transform the object code into some intermediate foich is
more suitable for further modifications.

Al t o is using a three-address intermediate language that is very close to the Alpha
machine language [2]. Although this might seem to makeo very non-portable, this
three address code is in fact very similar to the low level intermededresentation used

in many compilers [54, 55, 58].
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2.1.1 Code Discovery

Code discovery tries to locate the parts of the object file that contain exs#eunstruc-
tions. Locating code is not always straightforward. Often read-only datadgston-
stants, jump tables, floating point constants) and program code are interleatres i
Text Segment. This problem is aggravated if the architecture has variapté iestruc-
tions (like the Intel x86 architecture). In this case one has to be veryutaveere to
start decoding instructions. Usually one has to couple code discovery with coatvol fl
graph construction, i.e., whenever a new branch target is identified one startsngecodi
instructions at that address until one encounters a control flow changing instruction. In
the presence of indirect jJumps, however, it might still be impossible to des@code.

Fortunately, on the Digital Unix/Alpha platform, compilers are very disogudi and
place code and data into separate areas of the Text Segment. Furthermoteuatioms
are 32 bits wide.

If the program is dynamically linked, code discovery may also try to idenkigy
shared libraries used by the program and to parse them asAlvelb currently does not

support dynamically linked code.

2.1.2 Control Flow Graph Construction

An important part of the intermediate representation is the control flow graplkhwi

also essential for the dataflow analyses performed during subsequent phases.
Conceptually, an executable consists of a set of subroutines (functions) denoted as

Functions The distinguished subroutinentryfundesignates where the execution of

the program begins. Each subroutiheonsists of a collection of nodes (basic blocks)

Nodesf]. A noden consists of a sequence of instructidnstructionsn|, in which con-

trol always enters at the beginning and leaves at the end without intervening lmanche



33

The first instruction of a node is also callleéder. The collection of all the basic blocks
in all subroutines is denoted &ondes To simplify reasoning about nodes we assign
types to them, denoted Blypdn|. There is a wide variety of types. The most rele-
vant ones arecall for those nodes that initiate a subroutine invocatretyrn for those
nodes where execution resumes after the subroutineimialfpr those nodes starting a
subroutinegxit for those nodes ending a subroutine. Each subrotitinas exactly one
node of typeinit denoted asnitNode f] and exactly one node of typexit denoted as
ExitNodef].

Nodes are connect by directed edges, indicating possible control flow. An edge might
connect two nodes within the same subroutine — in which case it is called apnor
cedural edge — or two nodes in different subroutines — in which case it is called a
interprocedural edge. The collection of all edges is denotéttiges The set of imme-
diate successor (resp. predecessor) nodes of amisdienotedsucén| (resp.Predn]).

An interprocedural control flow graph consists of the directed graph creatddds
andEdges It is very similar to the program supergraph described in [56]. The (intrapro-
cedural) control flow graph for subroutirfeis the subgraph of the control flow graph
induced byNodesf].

Creating control flow graphs for programs in high-level languages is straightidrwar
[2]. Matters are somewhat more complex at link time because control flow leas be
obscured by the compilation process, and because we need to deal with maehine-le
idioms for control transfer such as computed jumps. The algorithm uséd by to
construct a control flow graph for an input program is as follows: As starting points
we use all the Text Segment addresses appearing as literal data somewherehject
code file. Here, relocation information helps us differentiate betweémdelresses and
random bit patterns that just look like addresses. Included with those addreskes i

start address aé#ntryfunwhich can be found in the program header.
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Now the “standard” algorithm [2] is used to identify more leaders and basic blocks
A leader that is reached by a call instruction begins a subroirtineode. A function
is assumed to extend from oimet node until just before the nextit node, in instruc-
tion sequence order. This ensures that each subroutine has exacihytamede. The
assumption that control enters a subroutine at exactly one point and leaves gt@xactl
other point is occasionally violated resulting in irregular interprocedural ebfiow
which our analyses and optimizations need to cope with. Section 2.1.4 describes how the
introduction of compensation edges can support analyses and optimizations in that case
Next edges are added to the control flow graph. Subroutine calls are modeled as de-
picted in Figure 2.2. Aall edge leads from the basic block containing the call instruction
(call node) to the target block which is, by definition, a subrouiimienode. Alink edge
connects theall node to the basic block beginning right after the call instructietu¢n
node). A return edge leads from teeit block of the called function (callee) to tineturn
node.
For any call nodenc, ReturnNod@:| denotes the corresponding return node and
Calledn;] denotes the function being called. Similarly, for amsturn node n,
CallNodén,] denotes the correspondimgll node andCallegn,] denotes the function

that was called.

1Some of the leaders determined by literal addresses also mark functiotoikstand this can be
determined using the relocation information.
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VCaHerr 7 - CaHee
lsi call init
callsite . edge | node
call
node
link
edge
return
node
‘return : exit
edge node

Figure 2.2: Modeling subroutine calls

Unconditional branches are eliminated from the intermediate representatmn s
this information is implicit in the edges.

Whenever an exact determination of the target of a control transfer is not possi-
ble, Al t 0 estimates the set of possible targets conservatively, using a special node
unknownnodend a special subroutinenknownfun 2 This simplifies the implemen-
tation of data flow analyses because we can associate worst-case datadionptions
with them and otherwise treat them as ordinary nodes and subroutines. If thenais a
direct jump to an unknown target we add an edge from the jump bloakkoownnode
and if there is an indirect call to an unknown subroutine it is simulated by laaal
unknownfun Conversely, if the start address of a block appears as literal data some-
where in the object code file, we assume it can be the target of any indirectgudp

add an edge fromnknownnodéo the node. If the start address of a subrouimtenode

2unknownnodelso represents thieit andinit node ofunknownfun
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appears as literal data somewhere in the object code file we assume the sulmautine

be the target of an indirect call and simulate a call framknownnode

2.1.3 Computed Indirect Jumps

Al t o works hard to find the actual target of indirect jumps and calls and will adapt
the control flow graph accordingly. As described in the previous section, a jump with
a unknown target will initially be modeled as a jumpuonknownnode Al t o tries to
determine whether such a jump is a computed jump derived from a C switemstatt (or
similar construct in other languages) by pattern matching a code templatthevitode
surrounding the jump2 The pattern matching is non-trivial since the compiler might
have reordered instructions, peephole-optimized instructions, or moved tistalinto
different nodes. If we find a match, we have implicitly determined the lonagind
dimension of the jump table and can refine the control flow graph by replacing the edge
to unknownnodeavith edges to the actual target nodes.

This transformation is done as part of the editing phase because it greatly benefits

from other transformations and analyses, such as liveness analysis.

2.1.4 Control Flow Anomalies

Machine code is not as well behaved as high-level source code. In particukancert
assumptions about control flow, which seem reasonable at a higher level, arelyoutine
violated at the machine code level.

One assumption is that control leaves a subroutine only exitaode or its call sites.
At the level of executable code, this assumption can be violategsbgping branches

i.e., ordinary (non-subroutine-call) control transfers from one subroutine into another.

3The template was derived by inspecting switch statement code produceddysveoimpilers
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Typical causes foescaping brancheare tail call optimization and code sharing in hand-
written assembly code (found, for example, in some numerical libraries).

Another assumption is that a subroutine call returns to its caller at the itistruc
immediately after the call instruction. This assumption is violated by noaklcantrol
transfers via subroutines suchsest j np andl ongj np.

Al t o handles both cases by the inserting additional edges, catlegbensation

edgesinto the control flow graph as depicted in Figure 2.3.

Caller: f Callee: g setjmp longjmp

init init
node unknownfun node

escaping
edge

unknown
node

compensation edge

exit exit
node node

compensation
edge

(a) escaping edge (b) setjmp/longjmp

Figure 2.3: Use of compensation edges

In the first case, aascaping branclrom a caller subroutiné to a callee subroutine
g results in a single compensation edge from élké node ofg to the exit node of f.
Conceptually, this ensures that control flow enteringan also exit fromf — this is
important for the data flow analyses to safely approximate program behavior. Without
the escape edge, data flow facts cannot be propagated baeitere they originated.

In the second case, the subroutisetj np has a compensation edge from
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unknownnod¢o its exit node, while the subroutineongj np has a compensation edge
from its exit node tounknownnodeThis models the fact that the location of an invoca-
tion of set j np can later be jumped to from unknown places, and that cdllowgj nmp
will cause a jump to an unknown location. Again this is necessary to insure aga
proximation for data flow analyses.

Some of theescaping branchesan be avoided by duplicating code. We may choose

to do this during the editing phase if the resulting code growth is reasonable.

2.2 Editing

In the editing phase the intermediate representation is transformed évathe desired
goal, e.g., instrumentation, optimization, or code compression.

The following chapters present a variety of concrete transformations anddlyses
necessary to support them. Here we will only discuss issues of a more genaral nat

In Al t o we restrict ourselves to changing code and code-related pieces of data like
jump tables. The data portion of the program is left unchanged. The reason for thts is tha
most high level information necessary to make correct transformatiaghgwtihe Data
Segment is either lost during compilation or is extremely hard to recoeereXample,

we are not able to change the orders of variables in a structure or record.

2.2.1 Scale Problems

Figure 2.1 summarizes the basic characteristics of the SPECInt95 benchuitais],
which are used in most of the experiments in this thesis. The benchmark progesens w

statically compiled, and hence the numbers include library subroutines.
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Benchmark| #Instructions| #Edges| #Nodes| #Subroutines
conpr ess 18759 9224 5021 224
gcc 295096| 158723 77505 2130
go 71721 29454 15696 605
i j peg 54611| 21532| 11534 639
[i 34768| 17225 9138 646
nB8ksi m 46117 21940, 11473 528
per | 00318| 44997 22662 618
vortex 127383| 58107, 28465 1026

Table 2.1: Characteristics of the SPECIint95 benchmarks

As can be seen from the table, some benchmarks are quite bigg@cghas about
300,000 instructions. Its intermediate representatiod iho consumes almost 100MB.
Hence, any algorithm applied during the editing phase must be aware of the potentiall
huge size of the intermediate representation. Algorithms that work well irecional
compilers (which operate on a per module or per subroutine basis) might be impracti-
cal for object code modifications because of the high time and especially the high spac
complexity. Clearly, any algorithm that is quadratic in the number of instastvill
not be feasible. Stingy algorithms — preferably linear in both time and spacee— a
necessary. Often we will be forced to make tradeoffs between praasid efficiency.
Furthermore, memory locality of the algorithms and data structures significafiti-

ences performance.
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2.2.2 Self Modifying Code

Self modifying code and runtime generated code are a major hurdle to object code mod-
ification. Self modifying code had become somewhat out of fashion but is now gaining
popularity again either directly [30, 29] or indirectly for just-in-time compda [33].

Al t o can cope with some forms of self modifying code, but will not work under
all circumstances. Imagine a piece of cgdlen the Text Segment which is changed at
runtime by another piece of code Note that this violates the read-only character of the
Text Segment. If we changeA in the editing phase the assumptions madé lpoutA
might not be valid anymore. This could cause the program to work incorrectly.

However, in the more likely case that code is generated on the fly into a dgalami
allocated piece of memory there will be no problems. The code cannot be altered by
Al t o since it is not part of the Text Segment. Invocation of such code will look like
an indirect control transfer. This control transfer is safely modeled usikgownfun

making worst case assumptions about the runtime behavior of the code.

2.3 Code Generation

After the transformations on the intermediate representation are finisheedead to
generate a new version of the executable. Converting the three-address dodt®doac
machine instructions does not pose any problems. Adding the unconditional branches
that have been removed during parsing is also straightforward. The diffictiligsain

translating the old code addresses into new ones and dealing with changed seggsent si

4Unfortunately, the programmer can use system calls to change access restfmtisegments
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2.3.1 Address Translation

The problem of address translation is a consequence of the fact that, after alject c
modification, code addresses (in particular subroutine start addressesveithenged.
Address translation has historically been a major problem for object code mudifica
systems. Several solutions have been proposed and implemented [75].

One approach is to avoid the problem by allowing only transformations that do not
change code addresses, e.g., old code can not be deleted or new code inserted. We
are allowed only to substitute code, e.g., substitute an instruction with an utiooadi
branch to a piece of code which executes the original instruction and after doirgg som
extra work branches back. Clearly, this approach is only useful for instrunemntait it
can be used to instrument a running program [61] in its address space, while it isgunni

The second approach translates some addresses statically and others diynamica
viz. at runtime. Pc-relative branches and subroutine calls are easily Oastdiecally;
so are branches and subroutine calls to absolute addresses. Targets of théwes larachc
procedure calls are, by definition, basic block beginnings. Therefore all the syssem ha
to do is to remember, for each basic block, the original address. After codeajener
the new addresses of the basic blocks are also known, and we can translate cldesldre
to new addresses. Other control transfer instructions, i.e., indirect corinsférs, are
handled by runtime address translation. Here a code snippet is added before an indi-
rect control transfer (jump) which, with the help of an additional table, tedeslold
addresses into new addresses at runtime. The table is an array of new axdithessed
by old addresses, and is appended to the Text Segment. If the snippet cannot find an
address in the table, it leaves it unchanged. This will allow runtime gewlecatde to
work properly. This approach is not well suited for optimizing executables, [subéan

used for instrumentation [75, 47]
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The third approach — the one used Byt o — does all the address translation
statically. This approach makes the assumption that indirect controlerangill branch
to addresses that have ultimately been loaded (verbatim) from memongcekid the
static translator has to do is to find the memory locations containing code asklpass
replace them with the corresponding new address. These memory locations — which
might be in the Text Segment, Data Segment or Program Header — are identified using
relocation information. This approach relies on the compiler to avoid ceciadling
styles that would break the scheme. For example, consider the two translati@ of

switch statement using a computed jump in Figure 2.4.

. text . data
lda rl1, table targets:
addg r1, r0O, r1 .word targetA, targetB,
jmp (r1l) targetC
.text
t abl e: lda rl, targets
br target A addqg r1, r0, r1
br targetB ldg rl1, 0O(rl)
br targetC jmp (rl)
(a) bad implementation (b) good implementation

Figure 2.4: Translations of a C switch statement using a computed jump

The value which is switched upon resides in regis@r The targets of the switch

statement are the labelsar get A, t ar get B, andt ar get C (not shown). The left

5The meaning of the Alpha machine instructions is explained in Appehdi
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hand side solution (a) adds the valuer6fto the table address to obtain the target of
the indirect jump. The indirect jump is followed by an unconditional branch to the final
destination. The right hand side solution (b) adds the valu® af the address of a table
containing the possible jump targets, then loads the target address and jumpsrtalthe fi
destination directly.

While there are no problems with the right hand side solution (b), the left hand side
solution (a) will not work, because the target of the computed jump is the result of an
arithmetic computation (rather than an indirect referenééX o has no way of telling
that thet abl e of unconditional branches is part of a computed jump, and should there-
fore remain unchanged. In fadl t o removes all unconditional branches from its in-
termediate representation and instead maintains them as edges in theftmmtgohph.

The resulting empty nodes may be moved around and possibly merged with other non-

empty nodes.

2.3.2 Segment Growing

Object code modification will usually change the size of the Text Segment. Thisas not
problem if the size shrinks, since we can pad it to the original length. Howétrez,size

grows beyond the original size (because of, for example, inlining or instrumentation),
the end of the new Text Segment may overlap the beginning of the Data Segment in the
address space, forcing us to move the Data Segment and the BSS Segment to higher
addresses. This can be achieved statically by using relocation infomtatidentify all
memory locations containing addresses inside the Data Segment or BSS Segment and
updating them accordingly. Or, it can be achieved dynamically, by inserting céoiebe

all load and store instruction to update the load/store address if necessekifylunder

Digital Unix/Alpha, there is usually a very big gap between the end of the Teh8et
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and the beginning of the Data Segméhivhich eliminates the problem. The growth of

the Text Segment might not exclusively stem from code growth: we also need gxte s

for new read-only constants and jump tables. For instrumentation purposes we might
also want to increase the size of the Data Segment to make space for padilinigprs.

Again, because of the gap between the Text Segment and Data Segment under Digital
Unix/Alpha, this can be easily accomplished by growing the Data Segmeniddoveer

addresses and placing the extra data structures before the original Data Segment

5The Text Segment typically start at 0120000000, and the data segir@«it40000000.
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CHAPTER 3

ANALYSES

In this chapter we describe techniques, analyses, and data structures #sddoby
which are useful independently of the purpose of object code modification. The main
focus is on register liveness analysis, which will provide the necesseatchaegisters

for many transformations performed during the editing phase.

3.1 Register Liveness Analysis

Liveness analysis attempts to determine whether a value kept in a eaoaktorage
location may be used later on during program execution. A variable is saidlivebe
this is the case. Liveness analysis of variables is a well-understooddeeheinployed
by most compilers to guide optimizations such as useless code elimination asteémreqgi
allocation [55]. Liveness analysis can also be performed on object codeet vagjisters
take the place of variables. Its main purpose is to identify useless code @novide
scratch registers for the transformations performed during the editing phase.
Compared to traditional variable liveness analysis which is usuallypracadural,
the register liveness analysis for executable code presented here wikhgacedural.
Interprocedural analysis on registers is simplified by the fact that themre aiasing
between registers and the number of registers for any given processor is bounded by a
constant. What makes it difficult are control flow anomalies (cf. Section 2.adi}eale

issues (cf. Section 2.2.1).
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Related Work: Work most closely related to our own has been done by Srivastava
and Wall on theOMoptimizer [67] and by Goodwin on th8pi ke optimizer [36]. We
improve on their liveness analysis in three ways. Firstly, we have chahgathderly-
ing flow equations resulting in three sets of almost identical equations, winigtifses
implementation and reasoning about correctness. Secondly, we accelerixedhe
iteration by exploiting a novel insight about the interdependence of the various pieces
of data flow information. This idea is also applicable to liveness analysigaridibles.
Thirdly, we show how to reduce the space requirement of the analysis by recomputati
and exploitation of the new data flow equations.

Furthermore, we explore ways to improve the accuracy of liveness analymi|a F

known technique involving callee-save registers we point out a possible geatoaliz

3.1.1 Interprocedural Data Flow Analyses

Intraprocedural data flow analyses consider all possible paths in the control fiolvajra
a subroutine to give an estimate of what data flow facts hold at a given node. Goaltiti
are not interpreted, i.e. we assume that both sides of the branch can alwaysrbeNsk
a result, we may include paths that will never be executed in reality aresthmeate will
be somewhat conservative.

For interprocedural data flow analyses we can simply adopt the intraprocedural ap-
proach and regard the interprocedural control flow graph as one big ordinary control flow
graph, treatingall andreturn edges as regular edges and ignoting edges. Analyses
performed in this fashion are call@dntext insensitiventerprocedural analyses. Such
analyses are simple and fast but often yield rather conservative &esisiace many
paths in the interprocedural control flow graph do not reflect real program executions.
An example is shown in Figure 3.1 where two call sites call the same subrdut®en-

sider the patiCl — IN — EX — R2. This path returns to the wrong call site and hence
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does not occur in any execution. But since variaBles used irR2 and not defined along

the path we conclude tha2 is live atC1, while in facts2 is dead, as it is defined Ri.

Paths which do not return to the wrong call site are cafkslizable pathse.g.,

Cl—IN—-EX—RlorC2—IN — EX — R2. See [46] for a more rigorous definition.

Callsite 1

s1=0
call ()

T

|
link :
edge |
|

|

|

Y

s2=0
t1=s1+v0

Figure 3.1: Unrealizable path in context insensitive analyses

return
edge

Callee: f

return

return
edge

Callsite 2

s2=0

call f()

link
edge

I
I
I
I
I
I
|

Y

t2=s2+v0

A context sensitive interprocedural data flow analysis considers only re@ipatils

in the interprocedural control flow graph [52].

3.1.2 Interprocedural Register Liveness Analysis

In this section we discuss two flavors of interprocedural liveness anafysigext sensi-

tive and context insensitive. Tuning possibilities are described and pericenmaumbers

presented.
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3.1.2.1 Context Insensitive Analysis

As described in the previous section, the context insensitive liveness anagsithe
standard intraprocedural analysis [55] and applies it to a program’s interprokedioia
trol flow graph treatingall andreturnedges as ordinary edges, and ignoting edges.

The analysis iteratively computes the fixpoint of the equations below

Livelnjn] = usén|U(LiveOutn] —def[n]) ne Nodes

LiveOufn] =Jse Sucgn|: Liveln[s| n € Nodes
subject to the initial values

LiveOufn] :=0 ne Nodes

Livelnin] :=0 ne Nodes

R.denotes the set of all registers. For each nadsveln[n] (LiveOutn|) contains the
registers live at the beginning (end) of the nodef|n| contains the registers which are

defined inn, usén| contains the registers which are used before they are defimed in

3.1.2.2 Context Sensitive Analysis

For context sensitive liveness analysis we must restrict ourselvesliaatde paths
through the interprocedural control flow graph. This is achieved by considering intrapro-
cedural paths only and modeling subroutine calls using summary information for the
called subroutine [52]. Conceptually, akll andreturn edges are removed from the in-
terprocedural control flow graph. Data flow throdiik edges is subject to modifications
described by the summary information for the called subroutine.

Two pieces of information are necessary to summarize the effectsloseacoutine

f on liveness:

e MayUseéf|. The set of registers that may be usedfby registerr may be used by
f if there is a realizable path fromitNod€ f] to a use of without an intervening

definition ofr. MayUségf| hence describes the set of registers which are live at the



49

beginning ofinitNodg f| independent of the calling context and hence are live at
the end of anycall noden, calling f. Typically these are the registers which are

used to pass arguments to subroutine

e ByPass$f|. The set of registers which if live at are live ain. for anycall nodenc

calling f. Typically these are the register which are not used at afl. by
We also define

e MustDef f]. The set of registers which are defined (written to) on all paths from

InitNod¢ f| to ExitNodef].

e MustDeadf]. The set of registers which are defined on all paths fhoitiNodg f|
to ExitNodéf]| and are not used before they are defined. ClebystDeadf] =
MustDef| f| — MayUségf]|

OnceByPassandMayUseinformation has been computed for each subroutine, live-

ness information is computed as follows:

PhaseLive : Computation of Liveln and LiveQut
iteratively compute the fixpoint of the data flow equations listed below
Livelnn] = usenju n € Nodes

(LiveOutn] —defn))

LiveOufn] = Jse Sucdn|: n € NodesA Typen| ¢ {call}
Liveln[s]
= MayUsef|U n € NodesA Typén| = call A

(ByPas§f]nLivelnn’]) n'=ReturnNodm] A f = Callegn]

subject to the initial values
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LiveOufn] =0 n € Nodes
Livelnn] =0 n € Nodes
MayUsef| :=as computed by PhaséayUse fec Functions
ByPas$§f| :=as computed in Phaf®yPass  fe Functions

The important aspect is the computation for tdadl nodes. A register is live at the
end of acall node if the register is used by the callééalyUsecase) or it is live at the
correspondingeturnnode and not defined — on at least one realizable path — inside of
the callee ByPasscase). This gives us some choice in the selection/computation of the
ByPasssets. If a register is iMayUséf| we can include it iByPas§f| even if the reg-
ister is never live at any of the correspondneturn nodes. Srivastavet al. [67] choose
ByPas§f] to be MustDeadf]. The problem with this approach is that it introduces a
mutual dependency betwe&yPassnformation andVlayUseinformation which com-
plicates the flow equations. Goodwin [36] choo8g#as$f| to beMustDef f] which
does not have this problem and is therefore preferable. In fact, any set wésdbel
tweenMustDef f] andMustDef f] U MayUséf] is a valid candidate foByPas§f]. Our
choice forByPas$f] is a superset of Goodwin’sand will result in more uniform data

flow equations. Below we show how tBgyPassandMayUsesets are computed.

PhaseMayUse : Computation of MayUsé| :

iteratively compute the fixpoint of the data flow equations listed below

Lit is difficult to give more intuitive description for this choic¢her than the fixpoint equations
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MayUselnn] = uségnju n € Nodes
(MayUseOuin| — defln))

MayUseOuin] =Jse Sucdn]: n € NodesA Typen| € {call, exit}
MayUselns|
= MayUsgf|u n € NodesA Typen| = call A

(ByPas$§f]nMayUselnn’]) n' = ReturnNodfm] A f = Callegn|

MayUsef] = MayUselrinitNodg ]| f € Functions
subject to the initial values

MayUseOuin] :=0 n € Nodes

MayUselrin] =0 n € Nodes

MayUsef] =0 f € Functions

ByPassf | :=as computed in Pha@yPass fe Functions

PhaseByPass: Computation of ByPa§§| :
iteratively compute the fixpoint of the data flow equations listed below
ByPasslin] = usé€n|U n € Nodes
(ByPassOun| — def|n|)
ByPassOuh] = Jse& Sucgn|: n € NodesA Typen| ¢ {call, exit}
ByPasslis|
= (ByPas&Callegn]|n n € NodesA Typén] = call A
ByPasslin]) n’ = ReturnNodfn|]
ByPassf | = ByPasslIfinitNodg f]]  f € Functions
Subject to the initial values
ByPassOuh] =0 ne Nodes\ Typén]| # exit
=R neNodes\ Typgn| = exit
ByPasslim] =0 ne& Nodes
ByPassf| =0 f e Functions
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Contrary to the intraprocedural liveness analysis or the context insensitilysiana
the choice of the starting values is crucial, e.g., initializBygPassOutf | of non-exit
nodes taR_ as in [36] yields overly conservative results [37]. Differing from Goodwin’s
approach we have modified the equation ByPasslin| by adding (unioningusen|
to the right hand side. This makes dByPasssets strictly bigger than his but since
usen|] C MayUselrn] holds, ByPasslfinitNode f]] will still lie betweenMustDef f]
andMustDe f f]UMayUséf]. The major virtue of this change is that it makes the equa-
tions of the three phases sufficiently similar that they can be unified into justiome
and compact set of equations (cf. Figure 3.2). The code implementing the analysis,
which uses the unified equations by means of a subroutine call is also correspondingly
simpler and smaller. The bigger sets do not affect the performance if theyadized as

bit vectors.
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Unified Dataflow Equations:

Dataln[n| = usen|U (DataOutn] —def[n]) ne Nodes
DataOutn] = (Jse€ Suc¢n|: Dataln[s] ne NodesA Typen| € NoTypes
= MayUsgf| U (ByPas$f|N ne NodesA Typen] = call

DatalnReturnNod@|])

Summaryf| = Dataln[InitNodg f]] f € Functions
Unified Initial Values:
DataOutn] :=0 n € Nodes\ Typdn| # exit

= ExitData ne Nodes\ Typen| = exit
Dataln[n| =0 ne Nodes

Summaryf] =0 f € Functions
Phase Adaptations:

Dataln DataOut NoTypes | Summary| ExitData

PhaseByPass | ByPassIn | ByPassOut | {call,exit} | ByPass | X
PhaseMayUse| MayUseln| MayUseOut| {call,exit} | MayUse | 0

Phasd.ive Liveln LiveOut {call} — 0

Figure 3.2: Unified fixpoint computation

3.1.2.3 Tuning the Context Sensitive Analysis

Even though our presentation of the data flow equations as phases suggest a certain or-
dering of execution, we can compute all fix points simultaneously because all@tuati

are monotone. However, if executed sequentially (in the @gBassMayUse Live) the

space used to holByPassOuh| andByPasslin] can be re-used to hoMayUseOuin|
andMayUselnn| which in turn can be reused to hdldveln[n| andLiveOutn|. For the
SPEC95 benchmaugc ¢ the total amount of memory needed to hold each oBiyieass

MayUse andLive fields is about 600 kB. Re-using space will reduce memory require-
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ments and also improve memory locality. When comparing PN&sgJ)sewith Phase
Liveit becomes evident that the fixpoint foiveOutn| (resp.Liveln[n]) must be a super-
set of the fixpoint foMayUseOuin| (resp. MayUselrin|). Hence, it is safe to initialize
Liveln[n] := MayUselrn] andLiveOu{n] := MayUseOujn] thereby accelerating Phase
Live by not having to start the fixpoint iteration from scratch.

Next we describe how to improve Phdgee more drastically exploiting the follow-
ing observation. We focus on Out-sets here; In-sets are analogous. For a negister

noden of subroutinef, we have
r € LiveOutn] = r € MayUseOun| v r € ByPassOun]

Conversely,

r € MayUseOuin| = r € LiveOufn|

But r € ByPassOuh| # r € LiveOufn]. The latter does not hold because our initial
values forByPassOubf the exit nodes were pessimistic; we essentially assumed that all
registers could be live. During Phakie it might turn out that not all registers are live

at someexit nodes. The correct condition is therefore
r € ByPassOuh| A r € LiveOufExitNodéf|] = r € LiveOufn| (3.1)

This suggests the following alternative approach for Phase which has the benefit

of iterating only over thexit nodes of the intraprocedural control flow graph.

(1) FOREACH neNodes DO

(2) Li veQut [ n]: = MayUseQut [ n]
(3) Li vel n[ n]
(4) REPEAT

MayUsel n[ n]

(5) changed : = fal se
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(6) FOREACH f eFuncti on DO

(7) new out := |J seSucc|[ExitNode[f]] : Liveln[s]
(8) | F new out # LiveCQut[ExitNode[f]] THEN
(9) changed : = true
(10) LiveQut[exit[f]] := new_out
(11) FOREACH neNodes[f] DO
(12) Li veQut [ n] : = MayUseCQut [ n] U( ByPass[ n] nnew_out )

(13) Li vel n[ n]
(14) UNTIL -changed

MayUsel n[ n] U(ByPass[ n] nnew_out)

We begin by setting the start values for the fixpoint iterations using the impvem
mentioned above (Lines 1 through 3). Then, we recompute the liveness information at
the exit nodes for all functions until there is no change (Lines 4-14). If the liveness
information at arexit node has changed we propagate this change according to (3.1) to
all nodes of this subroutine (Lines 11 through 13). Note that it suffices to propagate this
information toreturn nodes only.

LiveOutandMayUseOufiresp. Liveln andMayUselr) need not be kept in separate
locations; they can be merged into one, i.e., all occurrencésveDut (resp. Liveln)
can be replaced bylayUseOuf(resp. MayUselr) which will then contain the liveness
information upon completion of the fixpoint iteration. This also renders the firse thre
lines of the algorithm unnecessary.

Since Phastive is usually the costliest of the three, this improvement cuts down
execution time by 25%. (cf. Section 3.1.2.5 for experiments results). The drawdack
that space usage almost doubles becauseByfassandMayUseinformation have to

be kept around for each node (assumlinge information has been merged withayUse
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information).
The enhancement is also applicable to ordinary interprocedural liveness anaflyse

variables.

3.1.2.4 Control Flow Anomalies

Control flow anomalies as described in Section 2.1.4 are automatically handded dy
ciating worst case assumptions withknownnodandunknownfuras shown below and

relying on the presence of compensation edges.
ByPassOutuinknownnode := X LiveOufunknownnodge =R

ByPasslfunknownnode =% Livelnlunknownnode =%
MayUseOuunknownnode =X MayUseunknownfuh =%
MayUselnunknownnode =X ByPasfunknownfuh =%

3.1.2.5 Implementation and Performance of the Liveness Analyses

We have implemented the context sensitive and context insensitive livemedgsia al-
gorithms withinAl t 0. Besides the speed of the analysis, space consumption was of
primary concern to us. We found that it is usually better to recompute a diastdhsan to
store it. ThusAl t o only stores the variouSut-sets associated with a node. Thesets
are computed by traversing the instructions of a basic block backw#rtlke def and
usesets are not needed at all.

The relatively small number of instructions in a typical node make this approach
viable. We also do not maintain a worklist of those nodes that need to be reconsidered
during the fixed point iteration because this would incur the cost of at least one more

pointer per node. Instead, we mark those nodes which need recomputation and iterate

2Alternatively, we could keep thiN-sets and recompute ti@ut-sets from the successor nodes. How-
ever, when an optimization needs to determine which registers are liveo@titanithin a node, it is more
convenient to have th@ut-sets readily available.
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over all nodes, processing marked nodes until no marked ones are left.

The total space requirement for the context insensitive liveness analysibits @ér
node to hold the.iveOutinformation. (1 bit for each of the 64 registers of the Alpha
CPU). For the context sensitive analysis running the three phases sequentialygave
an additional 128 bits per function to hold tBgPassandMayUsesummary information
simultaneously. For the improved version of the context sensitive analysishbasin
the previous section, we need an additional 64 bits per node because we need to access
MayUseOutandByPassOusimultaneously.

Our experiments are based on the SPECint95 benchmark suite. Figure 2.1 summa-
rizes their basic characteristics.

Figure 3.1 shows our experimental results for the liveness analyses. The measure
ments were obtained on our reference machine (cf. Section 4.1). Besidesitrapaxe
usage, we also measured the precision. For the improved context sensitjssariae
space and time requirements are given in square brackets (the precisatrafiected).

The precision is computed as the average number of dead integer registesd| after
structions, i.e., the number of integer registers not live averaged over albpnqupints.

The last column contains the difference in precision between the contextisensit

and insensitive analysis.
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Benchmark Context Insensitive Context Sensitive [improved]| A

Sp. (kB) | Ti. (sec)| Prec.|| Space (kB)| Time (sec)| Prec.|| Prec.
conpr ess 39 0.05| 4.9 42[81]| 0.15[0.10]| 6.6| 1.7
gcc 605 1.30| 4.2 638[1244]| 3.75[3.00]| 6.6|| 2.5
go 122 0.20| 5.9| 132[254]| 0.55[0.40]| 11.5| 5.7
i j peg 90 0.15| 4.6| 100[190]| 0.40[0.30]| 5.4| 0.8
| i 71 0.10| 3.7| 81[152]|0.30[0.20]| 5.4| 1.8
nB8ksi m 89 0.15| 4.9| 97[187]|0.35[0.25]| 7.1| 2.3
per | 177 0.30| 4.3| 186[363]| 0.85[0.65]| 6.2| 1.9
vort ex 222 0.45| 5.3| 238[460]| 1.30[1.00]| 8.6| 3.3

Table 3.1: Performance of liveness analysis

The context sensitive analysis typically finds two additional dead integer eegjist
per node over the insensitive analysis and takes roughly three times as longpioteom
Our improvement to the context sensitive analysis speeds the computation up by approx-
imately 25% at the cost of a roughly twice the memory usage.

The number of available dead register suggest that usually there are plentgtofscr
registers available for program transformation such as the insertion afinmsttation

code.

3.1.3 Improving the Precision of Register Liveness Analysis

This section explores how the precision of liveness analysis can be improvedb-A
vious source for improvement is our overly pessimistic treatmenn&hownnodend

unknownfunThis will be exploited in 3.1.3.2. Section 3.1.3.1 shows how some registers
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which the analysis correctly identified as live can nevertheless bedegyas dead in

some contexts.

3.1.3.1 Callee Save Registers

As described by Goodwin in [36], information about callee save registers cax-be
ploited to reduce the number of live registers. Bawvedf| denoted the registers which
are saved and restored Hyand which are otherwise not used before defined.t
Savedf] will be a subset oMayUséf| because the saving of a register at function entry
will be regarded as a use of that register by the liveness analysis. Howgeause is
only relevant if the register is live at the return node of a given call site.

Hence we can removBavedf]| from MayUsef]| and instead add it tByPass$f]|
without affecting safety. The following slight modification of the equations upddtie

summary information in Phad®yPassandMayUseachieves the desired effect.
ByPassf] = ByPasslfinitNode f]]USavedf]|  f € Functions

MayUse¢f] = MayUselninitNodgf]] —Savedf] f e Functions
In order to get a better insight into how this optimization opportunity arises and how

it may be generalized we consider the following (hypothetical) code for completi@ddi

and two of its call sites”.

3As described in the next section we cannot rely on the calling conventiosis determinin@avedif]
but need to inspedt
4The meaning of the Alpha machine instructions is explained in Appehdi
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Conpl exAdd: Call sitel:
addg r10, r12, rO
addg r11, r13, rl ldg r10, 0O(r20)
ret ra ldg r11, 8(r20)

ldg r12, 0(r21)

Call site2: ldg r13, 8(r21)

bsr ra, Conpl exAdd

bsr ra, Conpl exAdd nove r0, r10

mulg r0O, r0, rO bsr ra, PrintNunber

mulqg rl1, rl, rl

addg r0, r1, rO ret ra

ret ra

Figure 3.3: Code example: addition of complex numbers

For Conpl exAdd the real and imaginary part of the first summand is passed in
registersr10 andrll, the real and imaginary part of the second summand in registers
r12 andrl3, and the result is returnedii andrl. Cal | si t el just prints out the real
part of the result, whil€al | si t e2 computes its squared norm.

Clearly, registers10 throughr 13 will be live at both call sites just before the call to
Conpl exAdd. But Cal | si t el only uses the real part of the result hence the result
computed by the second add@onpl exAdd is useless. A lazy programming language
would neither execute this add instruction nor the instructions computing the values of
registersr11l andr13. Unfortunately, we cannot eliminate theldqg instruction since

Cal | site2 uses both results0 andrl. But sincerl is dead inCal | sitel we



61

can consider registerd1 andr13 to be dead as well and subsequently eliminate the
corresponding load instructions. Registetd andr13 will then have arbitrary values
and the add instruction produces an arbitrary result which is igrored

In this light the callee save registeican be regarded as an additional argunagnt
and resultrs of the functionf. (s, as, andrs will of course denote the same register.)
as will be moved to a new location and then from theredolf rgis not live at a given
return node the move operations are useless. But as above we cannot delete ithem. A
we can do is marlas as dead at the corresponding call node and this is exactly what is

achieved by moving from MayUsgf| to ByPass$f].

3.1.3.2 Calling Conventions

Suppose functiori does not use or define registeaind does not call any other function.
Our liveness analysis will determine that ByPas$§f]. Now assume thaf and any
function callingf obey some sort of calling convention which state that regrsienot
preserved across procedure calls and does not carry a result. This impiesthaot
be live at any return node of a call site baand it is therefore safe to removérom any
ByPas§f]. Infact, itis irrelevant whetheris in ByPass$f | or not. The smalleByPasset
is nevertheless desirable, becausknownnoder unknownfurmay introduce unwanted
liveness information into the analysis which would be partially eliminatethe smaller
set. Unfortunately, we have no control over the enforcement of calling coowsnii
general, except for system calls. In fact, compilers often violatengadionvention when
they perform interprocedural register allocation or when library functionsramked
that implement missing hardware features such as a divide instructionnisseason-
able, however, to assume that calls to shared libraries and calls thiumgilon pointers

respect the calling convention.

5If addq could cause a side effect such as an overflow this approach is of course not valid
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In our current version of the liveness analysis those calls are modeled bita cal
unknownfun An enhancement would be to model this as a call to a different function
sysfun(or a special nodsysnoddor a context insensitive analysi$).

Let sysusalenote the set of registers potentially used according to the calling con-
ventions andsyssavehe set of registers preserved across function calls. The liveness
analysis will be augmented with the following assignments.

ByPassOusysnodg := syssave LiveOlgysnodg := sysuselsyssave
ByPasslifsysnodg := syssave Livelsysnodg :=sysuselsyssave
MayUseOutsysnodg = sysuse MayUssysfuf = sysuse
MayUselrisysnodg  := sysuse ByPagsysfun ;= syssave

3.1.3.3 Performance

We have added the enhancements described in the previous sections to the context sensi
tive analysis and measured the resulting gain in precision. Figure 3.4 shoaxetiage
number of dead integer registers after all instructions without any enhancemtardne

of the enhancements, and with both enhancements.

Our experiments show that incorporating both enhancements increases the number of
dead registers by as much as 10. Most of the improvement is due to the callirepeonv
tion enhancement. The reason for this lies with a mechanism related tostandard
library functionat exi t () . This function lets the programmer register other function
which are called upon termination of the program, i.e., typically after rétom func-
tion mai n( ) , using function pointers. Without the calling convention enhancement the
function pointer invocation will cause all register to be live at the endeifn() and

this will propagate backwards into most other subroutines.

81f the calling conventions for system calls differ from those for lagéunctions, as it is the case for
Digital Unix/Alpha, we introduce one function/node for each callingwamtion



Benchmark|| None | Save| Call. Conv.| Both || Both - None
conpress 6.6| 6.8 16.5| 17.1 10.5
gcc 6.6| 7.2 11.2| 121 5.4
go 11.5] 11.7 16.8| 17.1 5.5
i j peg 54| 55 15.5| 15.7 10.3
[i 54| 5.8 15.3| 15.7 10.3
nB8ksi m 71| 7.4 16.5| 17.4 10.2
per | 6.2| 6.4 15.4| 15.9 9.7
vortex 86| 9.2 15.7| 17.0 8.4
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Figure 3.4: Impact of enhancements to liveness analysis

3.2 Register Use-Def Chains

Register use-def chains provide, for each use of a register, a pointer to r#iokefi

A use of a register occurs when an instruction uses a register as its operanéads

that register. A definition of a register is an instruction that defines ga)ia register.

The use-def chains are a directed graph whose nodes are instructions and whose edges
are use-def pointers. In order to preserve space we only allow for one pointeepédi us

there are several definitions of a register reaching a use as depicted dhhlibadeside in

Figure 3.5 for registar0 we introduce a pseudo instruction at an appropriate place which
also defines that register, thereby shadowing the other definitions. The pseudictiostr

does not use any register. The resulting data structure will be cycle freedeeca

e All registers must be defined before they are used (enforced by inserting pseudo

instructions at alinit nodes).
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e All code is reachable (enforced by removing unreachable code).

e No use has more than one definition (enforced by pseudo instructions).

l

’ move 5,r0 ‘ ’move 0,r0 ‘ ’ move 5,r0 ‘ ’move 0,r0 ‘

add r0,r1,r3 pseudo-def r0
add ro,r1,r3

1

Figure 3.5: Introduction of pseudo definitions

This is analogous t@ functions used with the static single assignment (SSA) form [25].
Use-def chains simplify the implementation of optimizations such as commomx-sube

pression elimination and analyses such as alias analysis (cf. Section 3.3).

3.2.1 Algorithm

The difficult aspect of use-def chains is to determine where to insert pseudetigsts.
The algorithm proposed in [25] uses sophisticated data structures such as dominator
frontiers which are efficient but quite memory intensive. Our implemedgkes a
different route and uses a somewhat less time but more memory efficienttagbased
on and idea by Shapiro [63, 51].

Our approach treats each registeseparately. An intraprocedural forward data flow
analysis propagates definitions of the register to its uses. If several defnieach
a use we have not yet inserted enough pseudo instructions defining that register. We
insert pseudo instructions at appropriate confluence points and then restart thtbralgori

Originally there is only one pseudo instruction faat theinit node of each subroutine.
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More formally, we use a forward data flow analysis on the lattice depictixivbe
The meet operator is.
/IN
def, --- def,

N\
1

wheredef; denotes an instruction or pseudo instruction defiming

Phase 1:For each subroutinkiteratively compute the fixpoint of the data flow equations

listed below.
Out/n] = IFdeflnj=_1 THENIn[n] ELSEdefn] ENDIF ne Nodes$f]
In[n] = /\pePred[n} Out[p] n € Nodesf]
Subject to the initial values
In[n] =1 n e Nodesf|
Outn] =1 n e Nodesf|
defln] :=last definition of register in n or L otherwise ne< Nodesf]

After the fixpoint computatio®ut[n] # L andIn[n] # L holds for alln € Nodes$f|\
InitNod¢ f .
Phase 2:Determine confluence points and insert pseudo instructions.
Insert pseudo definitions in those nodethat do not have one already and that have at

least one predecessor that does not propagat¢o n.

(1) FOREACH neNodes[f] DO

(2) |F In[n]# T THEN CONTI NUE ENDI F
(3) | F n has pseudo instruction THEN CONTI NUE ENDI F
(4) FOREACH pePred[ n] DO

(5) IF Qut[p]# T THEN
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(6) {Prepend pseudo instruction to n}
(7) BREAK;

(8) ENDI F

(9) ENDFOR

(10) ENDFOR

Phase 3:Repeat steps 1 and 2 until no more pseudo instructions are added.
Eventually all nodes with In[n] = T should contain a pseudo instruction at the begin-
ning. This means that from a data flow point of viéwis prevented from reaching any
"use” of the register and all the pointers will point to a valid definition.

Phase 4:Propagatén|n] to all the uses withim.

(1) FOREACH neNodes[f] DO

(2) def := In[n]

(3) | TERATE i FORWARD THROUGH I nstructi ons[n]
(4) {if i uses r set use-def-pointers to def}
(5) IF {i defines r} THEN

(6) def =i

(7) ENDI F

(8) ENDI TERATE

(9) ENDFOR

3.2.2 Performance

The space requirements for the analysis is very moderate and consists of onetword (
byte) per basic block to holdIn[n] and another word to holdef[n]. Out[n] is dynam-

ically computed fromn[n] anddef[n] and not explicitly stored. We also maintain a bit
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vector (64 bits) per node that describes for which of the 64 registers pseudo iosisuct
were prepended to the node. This keeps us from having to actually insert the pseudo
instructions. The total space requirements for each SPECint95 benchmarkvis isho
column 2 in Table 3.2. It also give the execution time on our reference macHine (c
Section 4.1) in column 3. Column 4 contains the number of pseudo definitions generated

and column 5 the total number of instructions for comparison.

Benchmark|| Space (kB)| Time (sec)| #pseudo Defs| # Instructions
compress 39 0.15 2818 18759
gcc 605 3.75 47754 295096
go 122 0.55 8357 71721
iipeg 90 0.40 7947 54611
li 71 0.30 6513 34768
m88ksim 89 0.35 6179 46117
perl 177 0.85 15055 90318
vortex 222 1.30 19529 127383

Table 3.2: Performance of use-def chains

3.3 Register Alias Analysis

The problem of alias analysis or memory disambiguation at the machine code level is
to determine the relationship of two memory regions, i.e., whether they arecalent
disjoint, or intersecting. As a possible result we also allow the conseevegtimate that
nothing is known about the relationship of the two regions. The regions are typically
identified with an instruction, e.g., the store instructsdrg r 3, 8(r 11) describes the

region pointed to by11 with an 8 byte offset. The region is one quadword (or 8 bytes)
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wide.

Memory disambiguation is one of the weak points of object code modification be-
cause lots of the high level information available in an ordinary compileh astypes
that would be greatly beneficial is unavailable. Various alias analyses haxearbple-
mented and tried withidl t o. An early version is described in [28]. Here we describe

only the current implementation.

3.3.1 Alias Analysis by Inspection

The current version of alias analysis is essentially an analysis by inspgog., we try
to derive a symbolic description for each of the memory regions and then compsee the
descriptions. A few short cuts from this general approach are taken when possible
Stack pointer vs. other register: If one memory region is a stack location and the
containing function does not make use of references into the stack, then this ragion c
never intersect with a non-stack region.
Stack pointer vs. known address:If one memory region is a stack location and the
other region lies inside the Text, Data, or BSS Segment, then the regions mugolm.dis
General case:In the general case we employ the use-def chains form Section 3.2 for
our analysis. We describe our algorithm by the example given in Figure 3.6. We are
interested in the relationship of the memory region accessed by the tastdtructions
(labeled 44 and 45).

The algorithm tries to symbolically express the start address of a regiondiggra
the use-def chains, which are depicted as arrows (some use-def relatiarshypsitted
to avoid clutter).

We start with 8+ r1143, the region accessed by instruction 44. The subscript 43 for
r11 means that it was defined at point 43. Since the instruction at point 43 has outgoing

edges we can symbolically expand this te- 8541 +r1ig. 41 is merely a pseudo defi-
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nition and hence we are not able to expabgh any further. Butrl;4 can be expanded
and we obtain 136 r54; +r015. No further expansion are possible. Analogously, pro-
cessing the region accessed by instruction 12 yields 1%, + r0,5. The two regions

only differ in their constant term and so we conclude that the regions must be disjoint.
If the regions had differed in any other term but the constant term the relafoisthe

memory regions would have been conservatively estimated as unknown.

11: pseudo-def r3
12: pseudo-def r4
13: pseudo-def r5
14: pseudo-def r7

15:1dq r0,4(r4)

16: addq r0,128,r1
e

17: bne r7

21: addq r5,16,r5 31: addq r5,24,r5

41: pseudo-def r5

42: addq r0,r5,r10
L

43: addq r1,r5,r11

44: stgq r3,8(r11)
45: 1dg r2,16(r10)

Figure 3.6: Example for alias analysis
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CHAPTER 4

OPTIMIZATIONS

This chapter describes the implementation and experimental results of anzeptim
based oMl t 0. The overall structure of the optimizer consists of five phases and is

depicted in Figure 4.1.

Base Optimizations. After reading in the executable and transforming it into an inter-
mediate form a series of base optimization is performed. These include most of
the classical compiler optimizations such as constant folding, unreachable code
elimination, copy propagation, etc. These optimization are iterated uthtéres
fixpoint is reached or a maximum iteration count is exceeded. A second round of

base optimizations is performed just before code positioning.

One-time Optimizations. This phase performs optimizations that should only be done
once. There are three reasons for performing certain optimizations only once: (1)
The optimization may require costly analyses (e.g., common case spemaljzat
(2) Repetition of the optimization might have undesirable side effects (e.gk, sta
explosion for repeated inlining with stack merging); (3) Repeating the optifniza

will not give any additional benefit.

Code Positioning. After all optimizations have been executed, the interprocedural con-
trol flow graph is arranged into a linear sequence of nodes. Unconditional branches

which were eliminated when the intermediate form was created argaduced
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where necessary. Code positioning is intended to improve instruction cache hit

rates and reduce the (dynamic) number of (taken) branches.

Scheduling. Scheduling reorders the instructions inside a node in order to improve the
performance of a pipelined CPU. Our scheduler is a slight extensions of a regular
list scheduler and allows instructions to move into other nodes if this peserv

correctness of the program.

Base Optimizations Constant Propagation

Constant Folding
Strength Reduction
Code Motion

Inlining One-time Optimizations || | Block Fusion

. Nop Removal
Stack Merging Constant Generation
Common Case

col A Conditional Move Introd.
Specialization

Base Optimizations Reload Avoidance
Move Elimination
Peephole

Unreachable Code Rem.

.. . Dead Code Removal
Analyses Code Positioning Copy Propagation

Register Aliasing
Register Liveness

Use-Def Chains Scheduling

Figure 4.1: Phases of the optimizer based\bho

The optimizations are supported by the analyses described in the previous chapter.
4.1 Experimental Setup

The following sections describe the most relevant optimizations performetkebypti-

mizer and evaluates their effectiveness on the SPECint95 benchmaresilitenless
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otherwise noted, the benchmarks were compiled with the DEC C compiler V5.2-036
invoked ascc - (4, with additional linker options-(d -z -r -non_shared ) to

retain relocation information and produce statically linked executadbByg default the
optimizer uses execution frequency profiles obtained with the training input fee the
benchmarks. The execution times reported were generated using the refeparise

The timings were obtained on a lightly loaded DEC Alpha workstation with a 300 MHz
Alpha 21164 (EV5) processor with a split primary cache (8 kB each of instruction and
data cache), 96 kB of on-chip secondary cache, 2 MB of off-chip backup cache, and 512
MB of main memory, running Digital Unix/Alpha V4.0B (Rev. 564). In each case, the

execution time reported is the smallest time of 10 runs.

4.2 Optimization of Constant Expressions

4.2.1 Interprocedural Constant Propagation, Constant Folding, and Strength Re-
duction

There are generally more opportunities for interprocedural constant propagation at (or

after) link time than at compile time. There are three reasons for this:

1. The entire program, including all the library routines and an eventual runtirne sys
tem, is available for inspection. Constants can be propagated across campilati

unit boundaries and even source language boundaries.

2. Global data structures and subroutines have been placed within the programs ad-
dress space by the linker. Hence their addresses are known constants atdink ti

but unknown constants at compile time.

lwe use statically linked executables becadseo relies on the presence of relocation information
for the control flow graph construction. The Digital Unix/AlphaHler| d refuses to retain relocation
information for non-statically-linked executables.
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3. At link time some architecture-specific computations become availablepter
mization which are not visible at the intermediate code representatiohtygve
ically used by compilers. An example of this case is the computation of phe
register on the Alpha processor: the value of this register is generally recednput
in theinit node of a subroutiné as well as irreturn nodes following subroutine
calls to ensure that it always carries the same value while codeisrexecuted
[22]. In many cases, however, the recomputation is unnecessary and camibe el
nated by propagating the value of thp register through a program. It should be
noted that this optimization cannot be carried out at compile time since the value

of gp is only determined at link time.

The analysis used is based on the standard iterative constant propagatiohralgorit
[2], limited to registers but carried out across the entire interprocédordrol flow
graph. This has the effect of communicating information about constant arguments
passed in registers from a call site to the callee. To improve jpoeci&/e determine
(by inspection) the registers saved on entry to a subroutine and restored =t fhene
it: if a registerr that is saved and restored by a subroutine in this manner contains a
constantc just before the subroutine is called, thers inferred to contain the value
on return from the call? Our constant propagation is interprocedural and flow sensitive
[52]. It is not context sensitive since data flow information from differentsités is not
distinguished while being propagated through a subroutine. Context sensitive would re-
quire some notion of jump function [24] which would use up too much memory. Unlike
[13] our analysis does not sacrifice precision in the presence of recursion, though. Simi

lar to [76] our analysis is extended with the interpretation of conditionals.dhditional

2Unfortunately, we cannot rely on the calling conventions being obserkiadd-written assembly
code in libraries does not always obey such conventions, and compilersgmang ithem when doing
interprocedural register allocation.
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tests whether a register is equal to a constant, the constant will be propdgateghtthe
correct branch of the conditional. This simplifies the implementation of commss ca
specialization (cf. Chapter 5).

As usual, constant propagation is interleaved with constant folding. The constant
folder uses direct execution to compute the effect of the various opcodes (dforSec
4.2.4).

It is noteworthy that even some load instructions can be “folded”. If we know the
memory address an instruction loads from and this location belongs to a read-aiidy se
of the address space we can fetch the loaded value from the original executable.

Constant propagation is also interleaved with strength reduction. This migt se
unnecessary at first, but strength reduction might change the control flow graph aad henc
might help in finding more constants. For example, after a subroutine start addsess ha
been propagated to an indirect call instructipsi(), the callee becomes known and we

no longer have to make worst case assumptions abaut it.

3Due to some architectural peculiarities on the Alpha, initially most eglfsear to be indirect calls
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Program Evaluable/All| Evaluated/All| Evaluated/Evaluable
conpr ess 0.692 0.129 0.186
gcc 0.711 0.143 0.201
go 0.744 0.222 0.298
i j peg 0.720 0.103 0.143
[i 0.684 0.153 0.224
nB8ksi m 0.702 0.180 0.256
per | 0.715 0.167 0.234
vortex 0.700 0.241 0.344
Geom. Mean 0.708 0.162 0.228

Table 4.1: Effectiveness of Constant Propagation

The results of constant propagation are shown in Table 4.1. Column 2 lists tlge stati
number of instruction that produce a reseltgluablanstructions) divided by all instruc-
tions. An example of an instructions that does not produce a resuité¢valuablgis a
store instruction. Column 3 lists the static number of instructions whose resuét be
determined by Constant Propagatiendgluatednstructions) divided by all instructions.
Column 4 has the ratio of the previous columns.

The numbers were obtained after the second run of Constant Propagation during the
base optimizations. This allows other optimizations, especially unreactadieelim-
ination (cf. Section 4.3.4), to execute once, and hence makes the numbers more mean-
ingful than the ones obtained after the first run. It can be seen that, on the average
possible to evaluate about 16% of the instructions of a program at link time. Hgqwever

this does not mean that 16% of the instructions in a program can be eliminated. Some
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of them may have side effects, such as control transfers, and so elonimgatot pos-
sible. To eliminate others we would have to propagate the constant to all gsande
transform them into immediate operands there. On the Alpha this is only possible for
small (8 bit) constants. Section 4.2.3 describes optimizations along this liften ©

is possible, though, to transform an instruction computing or loading a constant into a
cheaper instruction (or instruction sequence) computing the same constantdfabnSe

4.2.2).

Program with opt.(sec)| without opt.(sec) with/without

conpr ess 259.8 277.3 0.937

gcc 232.9 258.3 0.902

go 304.0 323.8 0.939

i j peg 328.1 330.9| 0.992

[ 254.6 295.0 0.863

nB8ksi m 224.2 279.4 0.802

per | 182.0 220.5 0.825

vortex 316.4 444.4 0.712
Geometric Mean: 0.867

Table 4.2: Execution time impact of constant propagation

As shown in Table 4.2, this analysis has a profound impact on the performance of the
generated code. For example, the SPECIint95 benchrharksB88ksi m per |, and
vor t ex suffer slowdowns of 15-30% when this analysis is turned off. The reason for
this impact, in great part, is that many analyses and transformationsrreéhe knowl-

edge of constant addresses computed in the program. For example, the code generated
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by the compiler for a function call typically first loads the address of the céliection

into a register, then usesja&r instruction to jump indirectly through that register. If
constant propagation can be used to determine that the address being loaded is a fixed
value, and the callee is not too far away, the indirect function call candlaced by a

direct call using &sr instruction (this is a form of strength reduction): this is not only
cheaper, but also vital for the construction of the interprocedural control flow griaph

the program and for other optimizations such as inlining. Another example of the use
of constant address information involves the identification of possible targetdicgct

jumps through jump tables: unless this can be done, an indirect jump must be assumed
as being capable of jumping to any node in the interprocedural control flow gtaph,
which can significantly hamper optimizations. Finally, knowledge of constant sskese

is useful for alias analysis and the optimizations it enables, e.g., load anagbatance.

4.2.2 Constant Generation

As described in the previous section it is often possible to determine, frortecpsop-
agation/folding, that a value being computed or loaded into a register is a constant. |
such a situation the optimizer attempts to find a cheaper instruction to cothpigame
constant into that register. (This optimization could be generalized to ¢hsfpction
sequences to replace high latency operations, such as integer multiplicatens)ni-
plest case of this optimization involves computing the values of constants y&niic
registers whose values are known at each program point, namely, re@terhose
value is always 0, and the global pointer regigipr whose value at any program point

is known at link time. If the (signed) constaktcan be represented with 16 bits, the

instruction to compute that constant into a registierreplaced by the instructior | da

4More precisely, any basic block that is marked as “relocatable”. This is abstradtezliagnownnode
(cf. Section 2.1.3).
5The meaning of the Alpha machine instructions is explained in Appehdi
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r, k(r31)'. Similarly, if the difference between the consté&rdnd the value of thgp
register is representable as a signed 16 bit integer, we can do the same thggpess
the base register. The basic optimization is described by Srivastavaah[b8y, here
it is generalized so that a constant can be computed from a known value inggsteme
not justr31 orgp. Furthermore, we are not limited to address constants.

Care must be taken to ensure that the constants involved aced®tddressese.
addresses pointing into code bearing parts of the Text Segment. Since our optimizations
change the code, code addresses will change as well. Such constants are therefore e
cluded from this optimization. Other addresses, like data addresses, cgusbiaemns,
since the transformations implemented within our optimizer will leave theamanged.

To find out whether a constant might be a code address we use information from the Pro-
gram Header. describing the structure of the segments , their start addessséseir
length. The answer will naturally be conservative, but so far we have fourydfexr

false positives in our benchmarks.

Hldg r1, 16(gp) 1) Idg r1, 16(gp) (1) Idg r1, 16(gp)

2)lda r2, 8(rl) [(2)Ida r2, 8(rl)]
3)lda r3, 16(r1l) [(3)Ida r3, 16(rl)]

(1) (
(2)1dg r2, 96(gp)  (
(3)1dg r3, 32(gp)  (
(4)1dqg r4, 0(r1) (4 1dg r4, 0(r1) 4) ldg r4, 0O(rl)
(5) (
(6) (
(7) (

ldg r5, 0(r2) 5 1dg r5, 0(r2) 5)ldg r5, 8(rl)

6)addq r4, r5,r6 6) addq r4, r5, r6 6) addq r4, r5, r6

(
(
(
stq r6, 0(r3) (

7ystqg r6, 0(r3) 7)stq r6, 16(rl)

(a) original code (b) after const. gen. opt. (c) after const. usa. opt.

Figure 4.2: Code generated fae=b+c
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As an example of this optimization, consider the C statemant“b + c;”,
where a, b and ¢ are global (64 bit) variables of typéong, with addresses
0x1400021558, 0x1400021560, and 0x1400021568. Figure 4.2 (a) shows the code gen-
erated for this statement by the compiler. Instructiohs— (3) load the addresses of
the variables from the global address table, using the global pointer registés,index
into this table. Instruction$4) — (7) implement the actual addition. The optimizer is
able to determine the addresses loaded into regisier® andr3, sincegp is constant
within each subroutine and the global address table, it is pointing to, is a readrealy a
of memory. This allows constant value optimization of instructions (2) and (Bighw
replaces the address loads with chedpaa instructions as shown in Figure 4.2 (b).

Further optimizations are possible as described in the next section.

Program with opt.(sec)| without opt.(sec) with/without

conpr ess 259.8 278.4 0.933

gcc 232.9 239.2 0.974

go 304.0 308.7 0.985

i j peg 328.1 327.6| 1.001

li 254.6 271.3 0.939

nMB8ksi m 224.2 248.2 0.903

per | 182.0 197.1 0.923

vort ex 316.4 345.2 0.916
Geometric Mean: 0.946

Table 4.3: Execution time impact of constant generation

The performance impact of this optimization is illustrated in Table 4.3. The anogr



80

that benefit the most from this optimization arenpr ess, | i , nB8ksi m per |, and

vor t ex, with improvements around 7%.

4.2.3 Constant Usage

Besides the generation of constants as results, we also attempt to oghmiuse of
constants as operands. Some Alpha instructions allow the use of a small immediate
value in place of the second operand register. We exploit this feature whenesgaigos

If only the first operand register is determined to be constant, we try totheagperands

of the instruction. This is trivial if the instruction is commutative in its cpels. If the
instruction is not commutative, like a subtract instruction, we have two optidescan

swap the operands and change the instruction opcode, i.e., we change the instruction
which subtracts the second operand from the first to an instruction which sshitrac

first operand from the second (reverse subtract). If this is not possible bexxaaisan
instruction does not exist, we can still swap the operands but now we have to account
for the fact that the instruction produces a different result. For example, itefeof a
subtract instruction it produces the negative of the original value, and we mustymodif
all uses of the result accordingly.

The optimizer also exploits the signed 16bit offsets in load and store instruttions
make changes of the base register possible. The transition from Figure 4.2 (b) to (c
shows an example of this transformation. Instructions (5) and (7) are modified t& us
as the new base register. This is compensated for by changing the offsets tapriake
the difference in value between the original and the new base register. Niotedisters
r2 andr3 are no longer used in this code and will subsequently be deleted. Also note that
this transformation might create internal pointers or hide other pointers and tighs mi
conflict with a conservative garbage collector as described in [10]. It shioeitdfore be

turned off for those applications.
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Program with opt.(sec)| without opt.(sec) with/without

conpress 259.8 260.1 0.999

gcc 232.9 236.9 0.983

go 304.0 303.9 1.000

i j peg 328.1 329.4 0.996

li 254.6 255.4 0.997

nB8ksi m 224.2 226.8 0.989

per | 182.0 183.4 0.992

vortex 316.4 318.2 0.994
Geometric Mean: 0.994

Table 4.4: Execution time impact of constant usage

The performance impact of this optimization is illustrated in Table 4.4. The anogr
that benefits the most from this optimizatiorgisc with a 1.7% improvement. For other

programs the speedup is marginal.

4.2.4 Direct Execution

Constant folding is a difficult business. It requires us to provide an emulatortf@re

an abstract machine (for constant folding in an ordinary compiler) or a concestieime

(for constant folding in a link time optimizer). Either way, emulating edenary oper-
ations using a high level language is very tedious and error prone. Often the high leve
language does not have equivalent operators for machine instructions, like a bitwise r
tate instruction, and we need to resort to simpler bit manipulation operatiousied

by the language to emulate the rotate. Sometimes a language operator differdan subt
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ways from the equivalent operator provided by the machine or is unspecified, e.g., divide
and modulo operations with negative operands. In the case of floating point operation
the outcome is usually not even exactly defined, because only a certain number of digits
are guaranteed to be accurate.

The constant folding portion ajcc, for example, consists of almost 5000 lines
(150kB) of C source cod®

In our implementation we have chosen a different route, and resorted to elect
cution for constant folding [23]. In order to determine the result ohddq operation
on two known values we actually executeaahdq instructions. This guarantees perfect
emulation of the machine behavior. It also requires very little programmiiog €éfess
than 100 lines) and is very fast. Of course, we have now made the optimizenquite
portable but since there are other sources of non-portability this is only a mindicgacr

Our first implementation of the constant folder created a little subroutirte ttae
we needed to fold a constant, i.e., at runtime. In case of the example aboveytine r
would consist of armddq and ar et instruction. The operand and destination registers
of theaddq instruction were chosen to mimic the calling conventions, so that the rou-
tine could be invoked from C using function pointers. Since we were reusing thee sam
memory area for the little routine we had to make sure that the CPU woulgslsae”
the latest snapshot. This was accomplished by invalidating the instructtbe t&fore
invoking the routine. This worked fine under Digital Unix/Alpha but caused problems
under Linux/Alpha.

The most recent implementation avoids the instruction cache invalidationngy-ge
ating a subroutine for each possible opcode once at the initialization of the optimizer

Certain opcodes are excluded from direct execution, because they might rape exc

tions (e.g., integer arithmetic instructions that trap on overflow), for otheodgxwe

Sfile f ol d- const . ¢ of gcc version 2.5.3
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make sure that the arguments are valid, e.g., we do not execute floating point operations

if one of the operands isrot-a-number valu@NaN), like positive infinity.

4.3 Instruction Elimination
4.3.1 Useless Instruction Elimination

Our implementation of useless instruction elimination (also refeored tlead code elim-

ination [2]) is solely based on register liveness information. If an insbncomputes

a value into register and on all execution paths this register is not used before it is

rewritten, we can in most cases eliminate the instruction. Howewtée instruction has

side effects we need to be more careful, e.g., if an instruction changes thef ttowtrol

besides computing a value, we cannot eliminate it. This rule has been retaxedd

instructions which always have the side effect of possibly causing a segroaritatit.
Because we restrict our liveness analysis to registers, we will nattdeteless com-

putations whose value is stored into a memory cell from which it is never H@agever,

the store avoidance optimization described in Section 4.3.3 will catch a faéhesé

cases.

"Curiously enough, this caused problems with an early version of Boatonservative garbage col-
lector [10], which used a useless load instruction to probe for thadmies of the address space.
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Program with opt.(sec)| without opt.(sec)| with/without

conpr ess 259.8 262.9 0.988

gcc 232.9 241.1 0.966

go 304.0 309.4 0.982

i j peg 328.1 329.5| 0.996

[i 254.6 265.1 0.960

nB8ksi m 224.2 238.8 0.939

perl 182.0 193.9 0.938

vortex 316.4 341.2 0.927
Geometric Mean: 0.962

Table 4.5: Execution time impact of useless instruction elimination

The performance impact of this optimization is illustrated in Table 4.5. The pro-
grams that benefit the most from this optimizationgee, | i , ™88ksi m per |, and

vort ex, with improvements around 5%.

4.3.2 Move Elimination

The aim of the move elimination optimization is identical to copy propagatian, wie
try to reduce the number of move instructions. However, our optimization is georeral
and goal directed. The move elimination optimization examines each mdwvedisn
of the program in turn and tries to eliminate it by register renaming. This is iBne
cally within a basic block only, using register liveness information. Mdumigation

considers three patterns:

1. nove ra,rb => [nove ra,raj
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use rb => use ra

| astuse rb => use ra

In this pattern the last use of the targdd)(of the move instruction is in the same
basic block as the move instruction and the souragdf the move instruction is

still available at the last use of the target. Hence we can convertedl afsthe
target into uses of the source and eliminate the move instruction. Note thet this
the only pattern where copy propagation would yield the same effect. Patterns 2

and 3 cannot be handled by copy propagation.

This pattern will also work foraddq and similar instructions instead of move
instructions, if one of the operands is a constant and this constant can be combined

into the uses. For example:

addg ra,2,rb => [el i m nat ed]
I dg rc, x(rb) => | dq rc, x+2(ra)
addg rb,6,rc => addqg ra, 8,rc

Note, that this extension might create internal pointers or hide other pointers and
thus might conflict with a conservative garbage collector as described in [tL0]. |

should therefore be turned off for those applications.

. def ra => def rb

nove ra,rb => [nove rb, rb]



86

| astuse ra =>userb

In this pattern the definition of the source of the mona (nstruction and the last
use ofra are in the same basic block as the move instruction. The tatgetf(the
move instruction is not live between the definition and the move instructiso, Al
rb must still be available at the last useraf Hence we can convert all uses of the

target into uses of the source and eliminate the move instruction.

. def ra => def rc
nove ra,rb => [nove rc,rc]
use rb => use rc
| astuse rb => use rc
| astuse ra => use rc

In this pattern the entire live range of the soun@g énd the targetrp) of the move
instruction are located in the same basic block. If we can find a scraj@taec
which is available from the definition o to the end of both the live ranges i@t
andrb we can rename all uses and definitionsao&ndrb into uses and definitions

of rc.



87

Program with opt.(sec)| without opt.(sec)| with/without

conpr ess 259.8 261.2 0.995

gcc 232.9 237.6 0.980

go 304.0 306.0 0.993

i j peg 328.1 329.3| 0.996

[i 254.6 256.3 0.993

nB8ksi m 224.2 227.1 0.987

perl 182.0 182.2 0.999

vortex 316.4 316.6 0.999
Geometric Mean: 0.993

Table 4.6: Execution time impact of move elimination

The performance impact of this optimization is illustrated in Table 4.4. The anogr
that benefits the most from this optimizatiorgisc with a 2.0% improvement. For other

programs the speedup is marginal

4.3.3 Load and Store Avoidance

It is sometimes possible to identify load and store operations as unneceSsppose
that an instruction; stores a registar, to memory regiorl (or loadsr1 from memory
regionl), and is followed soon after by an instructibnthat loads from locatioh into
registerr,. If it can be verified that that locationis not modified between these two
instructions, theroad avoidanceattempts to delete instructida and replace it with
a register move fronmy to ro. It may happen that registeg is overwritten between
instructiond1 andl»: in this case, the optimizer tries to find a free registghat can be

used to hold the value iny. If the instructionl; can now be shown to be dead, it can be



88

deleted.

A similar optimization can be applied to two store instructibnand|, following
each other and accessing the same memory region. The first one is cleazbsaad
can be deleted. Note that since our useless code elimination optimizationSamuse
registers and ignores memory regions, it will not catch this case. We miglog a very
basic liveness analysis for stack locations to eliminate useless &idhesstack.

Optimization opportunities like the ones described above can be easily edfiyite
a compiler. However, we encounter additional opportunities at link time foriatyaof
reasons: a variable may not have been kept in a register by the compiler b&dause
a global, or because the compiler was unable to resolve aliasing adequatelyawsdec
there were not enough free registers available to the compiler. At link titeesses
to globals from different modules become evident, making it possible to keep them in
registers [74]. Inlining across module boundaries and inlining of library routines may
make it possible to resolve aliasing beyond what can be done at compile timak A li
time optimizer may be able to scavenge registers that can be used to hmd tradt were
spilled to memory by the compiler. Finally, code restructuring transfaonst such as
basic block duplication, might convert a partially redundant load into a fully redundant
load.

Many memory accesses result from the saving and restoring of calleeesgisters
at subroutine boundaries. Some of these accesses may be unnecessary, either becaus
the registers saved and restored in this manner are not touched along ati@xeaths
through a subroutine, or because the code that used those registers became unreachable,
e.g., because the outcome of a conditional branch could be predicted as a result of in-
lining or interprocedural constant propagation, and therefore was deleted. To rieduce t
number of such unnecessary memory accesses, the optimizer uses a variatianion

wrapping[16] to move register save/restore actions away from execution pathddhat
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not need them. The difference between our implementation of shrink-wrapping, and that
originally proposed by Chow [16], is that we do not allow any execution path through
a function to contain more than one save and restore operation for a partigitiere
Apart from this, if a function saves and subsequently restores a calleeesgister but

does not change the instructions to save and restorare eliminated.

Program with opt.(sec)| without opt.(sec) with/without

conpr ess 259.8 261.0 0.995

gcc 232.9 238.9 0.975

go 304.0 304.4 0.998

i ] peg 328.1 328.1 1.000

li 254.6 258.1 0.987

nMB8ksi m 224.2 228.2 0.983

per | 182.0 186.1 0.978

vort ex 316.4 315.8 1.002
Geometric Mean: 0.990

Table 4.7: Execution time impact of load and store avoidance

The performance impact of the load and store avoidance optimization is itettra
Table 4.7. The programs that benefit the most from this optimizatiogaeel i , and

per | , with improvements ranging around 2%.

4.3.4 Unreachable Code Elimination

Unreachable code —i.e., code that will never be executed — typically arisesaile

time due to user constructs (such as debugging statements that are turned tifhgy se
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a flag) or as a result of other optimizations, and is usually detected and dkohins
ing intra-procedural analysis. By contrast, unreachable code that is detelitddtiane
usually has very different origins: most of it is due to the inclusion of irreleliarary
routines, together with some code that can be identified as unreachable due to the propa-
gation of actual parameter values into a subroutine. In either case, liakdentification
of unreachable code is fundamentally interprocedural in nature.

Even though unreachable code can never be executed, its elimination is ddsirable

a number of reasons:

1. It reduces the amount of code that the optimizer needs to process, and can lead to

significant improvements in the amount of time and memory used.

2. It can enable optimizations that otherwise might not be possible, such as bringing
two basic blocks closer together, allowing for more efficient control trarisfer
structions to be used, or allowing for a more precise liveness analysis wigtih m

trigger several other optimizations.

3. It can reduce the amount of “cache pollution” caused by unreachable code that is
loaded into the cache when nearby reachable code is executed. This in turn can

improve the overall cache behavior of the program.

4. It simplifies certain analyses because after unreachable code eloninatcan as-

sume that every node is reachable from a subroutih@ode or thainknownnode

Unreachable code analysis involves a straightforward depth-first trheérige (inter-
procedural) control flow graph, and is performed as soon as the (interprocedurad) contr
flow graph of the program has been computed, and is repeated later with the base opt-
mizations. Initially, all nodes are marked as dead, and then nodes aredmesaichable

only if they can be reached from another node that is reachable. The entry point of the
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program (thenit node ofentryfur) is always reachable. We ignoreturn edges, hence

areturn node will be marked reachable only if the correspondialljnode is reachable.

Program orig. code (kB)| unreachable code (kB) ratio
conpr ess 103472 21396| 0.207
gcc 1503376 94504| 0.063
go 363392 28312| 0.078
i j peg 302784 54592| 0.180
li 188752 37000| 0.196
nB8ksi m 244960 39256| 0.160
per | 474000 43904| 0.093
vortex 758928 139772| 0.184

Geometric Mean: 0.133

Table 4.8: Effectiveness of unreachable code elimination

Due to technical reasons it is currently not possible to disable unreachable icode el
ination without disabling other optimization in our optimizer, hence we only repatitst
improvements on the code size. The amount of unreachable code detected in our bench-
marks is shown in Table 4.8. It can be seen that the amount of unreachable code is quite
significant: in most programs, it exceeds 15%. On the average, about 13% of the instruc-
tions in our benchmarks were found to be unreachable. This is somewhat higher than the
results of Srivastava, whose estimate of the amount of unreachable code in Griad F

programs was about 4%—6% [67].
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4.4 Code Motion and Restructuring Optimization

While the optimizations described in the previous sections are always benafidal
should be applied whenever possible, the optimizations presented next are best per-

formed when guided by execution frequency profiles.

4.4.1 Inlining

Inlining replaces a call to a subroutine with a copy of its body. It can be a vefylus
optimization, because it eliminates the overhead associated with ltrendaallows us

to specialize the body for a particular call site (calling context). H@rewlining is a

two edged sword. Many people have found unexpected performance degradation when

experimenting with inlining.

¢ Inlining at the source level might increase the register pressure [26] anddead

suboptimal register allocations.

¢ In FORTRAN programs, the compiler might no be able to exploit the no-alias
requirement for arguments of subroutine calls, once such a subroutine has been

inlined [20].
¢ Inlining of recursive subroutines may lead to stack explosion [14].

e Through the increase in code size inlining might hurt instruction cache perfor-

mance [53].

Our optimizer inlines subroutines at the object code level. This avoids the problems
with the increased register pressure and FORTRAN calling conventions, domewhat
more complex than inlining at the source level, where inlining is just a syng¢tans-

formation. If a subroutine contains a computed jump, for example, it is not sufficient to
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merely clone the subroutine body and insert it at the call site. We also nethtothe
jump table. In order to deal with the problem of increased code size we enydoyteon
frequency profiles.

The optimizer inlines a subroutine if

e itis small (less than 4 instructions).

e it has only one call site.

e itis called very frequently from a call site.

The first two cases are always beneficial since there is no increase irsizeddn
the last case we reduce call overhead at the expense of code growth. We do tioe take

benefits of call site specialization into account when making inlining decisions

Program with opt.(sec)| without opt.(sec) with/without

conpr ess 259.8 269.6 0.964

gcc 232.9 237.6 0.980

go 304.0 304.1 0.999

i j peg 328.1 328.5 0.999

[ 254.6 259.7 0.980

nB8ksi m 224.2 237.4 0.944

per | 182.0 178.2 1.021

vortex 316.4 321.3 0.985
Geometric Mean: 0.984

Table 4.9: Execution time impact of inlining
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The performance impact of this optimization is illustrated in Table 4.9. The anogr
that benefit the most from this optimization arenpr ess, gcc, | i , mB8ksi m with
improvements ranging around 3%. Ther | benchmark suffers a slowdown of 2.1%

indicating that some more fine tuning of the optimization is necessary.

4.4.2 Code Positioning

Program with opt.(sec)| without opt.(sec) with/without

conpress 259.8 259.1 1.003

gcc 232.9 264.5 0.881

go 304.0 309.7 0.981

i j peg 328.1 327.9| 1.000

[ 254.6 260.9 0.976

nB8ksi m 224.2 274.1 0.818

per | 182.0 204.5 0.890

vortex 316.4 372.2 0.850
Geometric Mean: 0.922

Table 4.10: Execution time impact of code positioning

Our code positioning is a variation of the Pettis-Hensen algorithm [57]. The algo-

rithm uses execution counts of control flow edges to achieve two goals:

e Minimization of the dynamic count of control flow changes (taken branches):
This is achieved by rearranging the basic blocks so that if basic Bloast likely
transfers control to basic blo&k thenB follows A in the program text. Decreasing

control flow changes improves the performance of pipelined CPUs like the Alpha.
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e Minimization of instruction cache misses:
This is achieved by grouping pieces of code that are likely to execute shaety af
another close together, thereby reducing the probability that they cause a conflict
in the instruction cache. Instruction caches usually have small assayiat that
more conflicts translate to more misses. Moving less frequently execotksl
away from frequently executed code reduces instruction cache pollution and im-

proves instruction cache utilization which leads to a reduction of capaigyes.

The performance impact of this optimization is illustrated in Table 4.10. Asrebde
by others [17] before, this optimization yields substantial speedups. The programs that
benefit the most from this optimization agec, | i , nB8ksi m per |, andvort ex,

with improvements ranging from 5% to 16%.

45 Overall Effectiveness

In this section we measure the overall effectiveness of the optinmzec@mpare it with

the vendor supplied optimizers.

45.1 Without Profiles

Table 4.11 compares the execution times of the SPECint95 benchmarks when compiled
with the vendor supplied C compiler with and without an additional run ofAheo
based link time optimizer. No profiling information is used.

The C compiler was invoked as

cc -4 $(CFILES) -nonshared -W.,-z -W,,-d -W,, -r

-Ilm-0 exe.cc

whereCFl LESis a list of all the C source files for the program. The resulting executable

was optimized using



96

alto -i exe.cc -0 exe.alto

The optimizer achieves an average speedup of 13.9%.

Program cc (sec)| Al to (sec)| Al tolcc
conpr ess 282.1 263.9| 0.935
gcc 290.2 259.5| 0.894
go 346.5 306.2| 0.884
i j peg 337.7 329.7| 0.976
li 315.5 262.4| 0.832
nB8ksi m 337.0 261.7| 0O.777
per | 247.9 209.2| 0.844
vort ex 493.4 378.1] 0.766
Geometric Mean: 0.861

Table 4.11: Overall execution time impact (without profiles)

45.2 With Profiles

Next, we measured the performance achievable using the existing capabolitetatic
optimization available under Digital Unix/Alpha. For this, we compiled the berachsn
at the same optimization level as before, but additionally with profilestBceinter-file
optimization and link time optimization usingM [67]. For this, the programs were

compiled as follows:
1. First, the benchmarks were compiled as

cc -4 $(CFILES) -nonshared -Im-0 exe.cc
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whereCFl LES s a list of all the C source files for the program.

. The resulting executabkxe. cc was instrumented witpi xi e and run on the
SPECO95 training input for the benchmark to produce an execution profile. A feed-

back file was then generated from this profile using the command
prof -pixie -feedback fb.cc exe.cc

. The source files were recompiled with profile-guided and inter-file opttrorza

turned on, using the feedback file generated in the previous step:

cc - -ifo -inline speed -feedback fb.cc $(CFl LES)

-non_shared -l m-0 exe.ccfb

The switch- i f o turns on inter-file optimization and nl i ne speed instructs

the compiler to inline routines to enhance execution speed.

. The resulting executabéxe. ccf b was again instrumented wifi xi e, using

the SPEC95 training inputs.

. The resulting profiling information fa@xe. ccf b was used to recompile the pro-

gram a final time, this time with theMlink time optimizer turned on as well:

cc -4 -ifo -inline speed -feedback fb.ccfb -om
-W,, -omconpress_lita -W, - omdead_code
-W,, -omi r eor g_f eedback, exe. ccfb

$(CFILES) -nonshared -Im-o0 exe.final

The reason it is necessary to regenerate the profile informatic@Mas that the
feedback-directed optimizations can change code addresses, rendering the original

profile useless from the perspective@ Notice that in this step, two distinct
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sets of profiles are being used: the feedback filecc, generated from the orig-
inal profile obtained in step 2; and the profile #xe. ccf b, obtained for the

executable resulting from feedback-directed inter-file optimizationap 4.

Compared to the procedure just described, optimizing a benchmark utilizing profiling

information with theAl t o based optimizer is rather simple.
1. First, the programs were compiled as

cc -4 $(CFILES)-nonshared -W,, -z -W,,-d -W,, -r

-Ilm -0 exe.cc
whereCFl LES s a list of all the C source files for the program.

2. The resulting executabtxe. cc was instrumented witpi xi e and run on the

SPECO95 training input for the benchmark to produce an execution profile.

3. Finally theAl t o based optimizer was run exploiting the profiling information

generated in the previous step

alto -i exe.cc -0 exe.final

Table 4.12 is similar to Table 4.11 except that we allow both the vendor supplied
compiler and theAl t o based optimizer to utilize profiling information obtained from
training input of the SPECint95 benchmarks.

As can be seen from Table 4.12, thet o based optimizer beats the best optimization
techniques provided by the vendor by 5.7%.



Program cc (sec)| Alto (sec)| Altolcc
conpr ess 272.8 259.8| 0.952
gcc 226.3 232.9| 1.029
go 299.7 304.0f 1.014
i j peg 332.9 328.1| 0.986
i 288.2 254.6| 0.883
nB8ksi m 230.8 224.2|1 0.971
per | 201.7 182.0f 0.902
vortex 390.3 316.4| 0.811
Geometric Mean: 0.941

Table 4.12: Overall execution time impact (with profiles)

99
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CHAPTER 5

COMMON CASE SPECIALIZATION

In the previous chapter we discussed classical compiler optimizations iomhibext
of link time optimization. Only a few of the optimizations exploited profiling infaam
tion, and those that did used simple execution frequency profiles. In this chapter w
describe a highly speculative optimization exploiting additional, more sopestigao-
filing information. Even though, this optimization can be incorporated into a regular
compiler, it is presented here in the context of link time optimization.

Knowledge that an expression in a program can be guaranteed to evaluate to some
particular constant at compile time can be profitably exploited by constant folding (
Section 4.2.1). This is an “all-or-nothing” transformation, in the sense that uhlesg-
timizer is able to guarantee that the expression under consideration evduatesnpile
time constant, the transformation cannot be applied. In practice, howeseofién the
case that an expression at a point in a program “almost always” takes on @ulaarti
value [11]. As an example, in the SPEC95 benchnpaekl , the functionmenmove()
is called close to 24 million times: in almost every case, the argugieing the size of
the memory region to be processed has the value 1; we can take advantage «tf this fa
to direct such calls to an optimized version of the function that is significgimpler
and faster. As another example, in the SPEC95 benchimark very frequently called
function,l i vecar (), contains aw t ch statement where one of the case labels, cor-
responding to the typel ST, occurs over 80% of the time; knowledge of this fact allows

the code to be restructured so that this common case can be tested firsi, comdrel
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does not have to go through the jump table, which is relatively expensive. Asdkese
amples suggest, if we know that certain values occur very frequently aircg@aints

in a program, we may be able to take advantage of this information to improypethe
formance of the program. Unfortunately, classical compiler techniques cannotde use
to take advantage of knowledge of the distribution of values in order to optimizkdor
common case. The idea behind common case specialization is to employ sapédisti
(value) profiles to allow such optimization.

There are a number of technical issues that have to be addressed to accdmglish t
Specializing a piece of code for “too many” different values, or specializote where
the benefits of specialization are not high enough, can lead to performance degradati
It is therefore necessary to determine what code to specialize, and toewteat. It
is also necessary to determine how the specialization should be carrjesbdbat the
common case is made efficient while the code remains correct.

The following sections address these questions and show how value-profile-based
specialization can be automated and integrated into the link time optipriesented in
the previous chapter.

Related work: There is a considerable body of work on program specialization
within the partial evaluation community: Jonesal. give an extensive discussion and
bibliography [43]. This work focuses largely on aggressive code specializatidmgt
with known values for some or all of a program’s inputs. The issue of specializati
based on value profiles is not considered.

Some implementations of object-oriented languages attempt to mitigate theokigh ¢
of dynamically dispatched calls using a limited form of value-profile-bapedializa-
tion. The idea — referred to dgpe feedbackr receiver class predictiofB8, 41] — is
to monitor the targets of dynamically dispatched function calls, and to usentbrsna-

tion to inline the code for frequently called targets. The main limitatiothsf approach
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is that the specialization is restricted to dynamically dispatched iimcalls, and so
will not be applied to “ordinary” code even if such code could benefit substantialty fr
knowledge of the values most commonly encountered at runtime.

Another approach, termeati/namic compilationspecializes code at run time [5, 50,
30, 19]. It focuses on values which are unknown at compile time but constant at kin tim
Those values are usually identified with support from the programmer, through source
code annotations, and the process is therefore not fully automatic. The optimization
usually performed by producing a machine code template at compile time and timgn fill
in the blanks at run time: this causes additional overhead. Furthermore, thisaalppr
implies that the code may not be optimized to the fullest extent, since the tengiet
specialized for each filled in value.

Calderet al. have investigated issues and techniques for value profiling extensively
[11]. Our implementation of value profiling was inspired by theirs and is venylai
to it. While Calderet al. consider profiling both registers and memory locations, we
profile only registers. We use a two-stage profiling process in order to redudenthe t
and space overheads. The idea s to first profile the application using a sirsighblmek
profiler such api xi e, and then use the execution frequency information so obtained to
identify candidates for value profiling and specialization. In a different p&jsdderet
al. discuss value-profile-based optimization [12]; they use hand-transformed @sampl
to show that value-profile-based specialization can yield significantispgeovements.

By contrast, the work presented here describes value-profile-based igpéiolalthat is

fully automatic and that has been integrated intoAhé o system. This automation is
nontrivial, since it requires a careful cost-benefit analysis within the optinto avoid
degradation of performance. The details of this cost-benefit analysis, and of how the

specialization is carried out, are described in the following sections.
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5.1 Preliminaries

Suppose we have a code fragm€nthat we wish to specialize for a particular valie
of a register (or variable). Conceptually, value-profile-based specialization transforms

the codeC into:
if (r ==v) then (C),_y elseC

where(C),—y represents the residual code®éfter it has been specialized to the value
vofr. Thetestif (r == v) ... is needed because we cannot guaranteertial
always take on the valueat that program point. The idea can be generalized to multiple
values: given a probability distribution on these values, we can use atanlled tests
such as the one above, organized as an optimal binary search tree, to choess ety
specialized versions. For simplicity of discussion, we focus on spedialidar a single
value here, since this illustrates the technical issues that arise.

Notice that, while the specialized code),—, may be more efficient than the original
codeC, the overall transformed code will actually be less efficient than thygrai code
for values ofr other thanv, since a runtime test has been introduced. There is thus a
tradeoff associated with the transformation: the cost of some executionmpathbe
reduced by the specialization, but this will be accompanied by an incredse cost of
other execution paths. If this tradeoff is not assessed carefully, Sgati@h can lead to
a degradation in performance.

Before we can actually carry out any code specialization, there are a nofrdsi-
sions that have to be made. Specifically, we have to decide the prograrh pevhere
the specialization should begin (this corresponds to the point where runtime tesils on

ues have to be inserted, as discussed above); the regrgtese values we are interested

LFor our purposes a “program point” refers to the points immediatelyrbefr after an instruction; this
includes the entry and exit points of basic blocks.
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in;2 the particular value(sy that we specialize for; and the actual code fragn@ttat

is to be subjected to specialization.specialization triplds a triple of the form(p,r,v),
wherep is a program point; is a register, ang is a value for that register; such triples
identify the runtime tests that have to be inserted in the context of valuegsbatied
specialization and the program points where they must be insertedspEoelization
regionof a triple(p,r,Vv) refers to the region of code that is chosen for specialization; this
identifies the code fragments that appear intthen andelsebranches of the runtime
test corresponding to that triple. The details of how specialization trgpldgegions are

chosen are discussed in the next section.

5.2 Code Specialization

Value-profile-based code specialization is a three-step procesrg8@&il describes a
cost-benefit analysis that is fundamental to our approach. In order to reduce tlamtime
space overheads of value profiling as far as possible, we first identify wbiogram

point, registen pairs merit profiling. Section 5.2.2 discusses how this is done so as to
avoid profiling instructions that cannot help us speed up the program. The second step,
discussed in Section 5.2.3, is to carry out the instrumentation and profilinfystsab

to obtain the value profiles. The final step, discussed in Section 5.2.4, usesuhe val
profiles to carry out specialization for those program points where this is detented

profitable.

2In general, specialization can be carried out based on the value of a regisiaje;apr memory
location, or relationships between such values. To simplify the digsusand because our current imple-
mentation carries out specialization based on register values, we referdteregilues when discussing
specialization.
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5.2.1 Estimating Costs and Benefits of Specialization

Our value profiling and specialization decisions are guided by estimates of nieéitbe
that would be obtained from code specialization, given the knowledge that a rednater
valuev at a program poinp, denoted byBenefit(p,r,Vv). The benefit tries to approximate
the number of saved CPU cycles. As we will explain below the estimate gil@ser

bound on the actual benefit. There are two components to the computation of benefits:

(i) For each instructioh that uses the value afavailable atp, there may be some
benefit to knowing that its value is The magnitude of this benefit will, in general,
depend on the type of the operand position whereoccurs, and the actual value

vofr, and is denoted byavings(l,r,V).

(ii) It may happen that knowing the value of an operand registéran instruction
| allows us to determine the value computedlbyin this case] is said to be
evaluablegivenr, written Evaluable(l,r). If | is evaluable givem, the benefits
obtained from specializing other instructions that use the value computetbby
a particular value of can also be credited to knowing the valuercdt p. The
indirect benefits so obtained from knowing that the value iof instructionl is v

are denoted bindirBenefit(1,r,Vv).

Let ExeFreq(l) denote how ofterh is executed. LeUses(p,r) denote the set of all in-
structions that use the value of registehat is available at program poipt Then the

benefit of knowing that a registethas valuers at program poinp is given by the follow-

ing:

Benefit(p,r,v) = Z (ExeFreq(l) x Savings(l,r,V) + IndirBenefit(l,r,V))
lcUses(p,r)

The indirect benefits of knowing that registdnas valuer at instruction is given by the

following. Here,p’ is the program point immediately after ResultRef) ) denotes the
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register into whicH computes its result; andalug_,(l) denotes the value computed by
instructionl given that register has the value (this is undefined iEvaluable(l,r) is

false).

. _ Benefit(p’,ResultRef) ), Valug_y(1)) if Evaluable(l,r)
IndirBenefit(l,r,v) =
0 otherwise

An approximation is made when estimating the indirect benefit, because thbdact
equalsv is forgotten in the case thatbecomes evaluable. The only information that is
propagated in that caseResultRef ) equalsvalug—_,(l). Consider the following code

example:

ldg r1, 4(r6) # |l oad value fromnenory into rl
addg r1, 1, r2 # conput e
mulqrl, r2, rO # ri* (1+rl) intor0O

We want to compute the benefit of knowings value after the load instruction. Knowing

r1 will make theaddq instruction evaluable, hence adding to the overall benefit and
makingr2 also known. However, theul g instruction will not appear to be evaluable,
we just obtain the sum of the benefits of knowirigandr2 separately. However, such
case are rare and the approximation allows us to simplify the implemamtiatastically:

The equations for computing benefits propagate information from the uses of a register
to its definitions. These equations can, in general, be recursive, correspondingde

in the def-use chain. The standard approach to solving recursive equations in t cont
of compile-time program analysis is to compute—usually iteratively—a fixpoint ave
suitable domain. We do not follow this approach, instead we use our cycle-freefuse-de
chain datastructure (cf. Section 3.2) and propagate information bottom-up frorofuses

registers to their definitions, in a single pass.
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The benefits of specialization have to be weighed against the costs incurred due to
runtime tests. The cost of such a test depends on the register and value b&dg test
e.g., testing for the value 0 is usually fairly cheap, while testing for a nom{eating
point constant may incur a load from memory. The cost of testing whether a ragister
has a valuer is denoted byTestCost(r,v). The cost tries to approximate the number of

additional CPU cycles needed.

5.2.2 Identifying Candidates for Specialization

In order to reduce the time and space overheads for value profiling as far aslgossi
we attempt to identify candidatprogram point registel) pairs for which specialization
could conceivably yield a performance improvement if we had a sufficienthyasé run-

time distribution of values. This is done by estimating, for each such paiméxémum
benefitMaxBenefit(p,r) that could be achieved via specialization if the value at p

was completely invariant dynamically—that s, always had the same vakiie.tAe case

of benefits, discussed in the previous section, the computation of this quantity has two
components. The maximum savings incurred from the specialization of an instrluction

to the value of a registeris given by
MaxSavings(l,r) = mVaXSavings(I ,1,V)

In the implementation, of course, we do not compare the valugswvaigs(l,r,v) for all
possiblev, but resort to what is essentially a table lookup. The maximum benefit is then

given by

MaxBenefit(p,r) = Z (ExeFreq(l) x MaxSavings(l,r) + MaxIndirBenefit(l,r))
leUses(p,r)
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whereMaxIndirBenefit(l,r) is given by

MaxBenefit(p’, ResultRe if Evaluable(l,r
MaxIndirBenefit(1, r) = (P 9)) (1,1)

0 otherwise

Thus, MaxBenefit(l,r) takes into account the type of the instruction and operand posi-
tions where occurs, but not the actual valueroét p, since this is not yet known. Thus,

the division instructionz = x di v r’ will be given a greater benefit thaz * = x

di v r’, because the first case offers greater possibilities for strength redadiased

on the knowledge of the value of On the other handz' = r di v 32’is evaluable

and therefore is given an even higher benefit which is strongly related tatdreci of
thedi v instruction. Conditional branches are never evaluable since they do not com-
pute a value; however, these instructions are assigned a relatively hidit,lmnee the
branch can be optimized away if the condition register’s value is known.

Analogously, the minimum cost of testing a registéor a valuev is given by
MinTestCost(r) = mvinTestCost(r,V).

Once maximum benefits have been computed as described above, the candidates for

profiling are chosen as follows: registeis value-profiled at poinp if and only if
MaxBenefit(p,r) > MinTestCost(r) x ExeFreq(p).

5.2.3 Value Profiling

Given a set of grogram point registel pairs to be value-profiled, we use a scheme
based on that of Caldest al. [11] for obtaining value profiles. As mentioned earlier,
our implementation of value profiling obtains profiles for registers only, not for mgmor
locations. The actual profiling is carried out by a function created for this purfjtse

function compares the value of the register in question with the contents of asfzed-
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table of previously encountered values. If the current value is already inliles the
count of that value is incremented; otherwise, if the table is not full, the valagdded to
the table and its count initialized to 1. If the table is full the value is ignolRedtiodically,
the table is cleaned by evicting the least frequently used values from tlee tiailslallows
new values to enter the table. We also keep track of the total number ofdxaeation
passes through the poiptby incrementing a counter associated with that point.

We have also implemented a variant of this scheme that wepalicate profiling
where we ask how often a given predicate is satisfied at a given programipxamaples
of such predicates are: “is the value of a given registan-negative?” or “is the value
of registerr, different from that of register,?” Notice that predicate profiles are not
simply summaries of value profiles: e.g., given value profiles for regisieasdry, we
cannot in general reconstruct how often the predicate= r, holds. The predicate
that we choose to profile at any program point is typically determined by consatesati
of the possible optimizations that might be enabled based on that predicate’s profile.
Predicate profiles are important for three reasons. First, they concegaabyalize the
notion of value profiles by allowing us to capture the distribution of relationshipedas
different program entities. Second, a predicate profile may have a skewedutish,
and therefore enable optimizations, even if the value profiles for the conssitofethie
predicate profile are not very skewed: for example, a predigata, may be true almost
all of the time even if the values iy andr, do not have a very skewed distribution.
Finally, the implementation of predicate profiling can be made more effidiant that
of general value profiling because we know that the evaluation of a predicate&keaonta

at most two values.
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5.2.4 Carrying out the Specialization

Once the value profiles have been obtained, code specialization involvegpso Birst,

itis necessary to determine the particular specialization tripléskiwauld be considered,
and the corresponding specialization regions. The code transformation is thed oat

by cloning the specialization region, incorporating the clone into the code togetlner wit

tests on register values as described above, and carrying out the actisllzytem.

5.2.4.1 Identifying Specialization Triples

The benefit computation described in Section 5.2.1 is used to identify the spetiadi
triples for which code specialization is worthwhile. Since we know the 8igtion of the
values taken on at the points that have been profiled, we can determine the pipbabili
prob (V) with which a valuev occurs. Specializing at a program popitor a valuev of a

register is then worthwhile only if
Benefit(p,r, V) x prob(v) > TestCost(r,V) x ExeFreq(p)

Once we have identified the set of specialization triples for which the beméfgpe-
cialization exceed its runtime cost, we have to choose which of these shduédlyac
be specialized. An issue that has to be addressed here is that the spgemalegions

for different such triples may overlap. This is illustrated by the follgyvinstruction

sequence:
ldg r5, 0(r4) #r5 :=1oad fromO(r4)
and r5, Oxff, r6 #r6 :=r1r5 & Oxff

Suppose that we have value profiled registeafter thel dq instruction and registai6
after theand instruction, and that based on the cost benefit analysis, both of these instruc-

tions are candidates for specialization. However, the program points are depen@ent
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is computed front5—and their specialization regions overlap. Depending on the cir-
cumstances, it might be better to specialize based ohdlgeinstruction because more
instructions use the result of this instruction; in other situations, it might berbteit
specialize based on thend instruction because its value distribution might be more
skewed. In such cases, we specialize only the more promising one, based ostthe ¢
benefit analysis; in the case of a tie, the program point that dominates the other is cho-
sen (as discussed in Section 5.2.4.2, overlaps are not possible unless one of the points

dominates the other).

5.2.4.2 Identifying Specialization Regions

Given a set of specialization triples, we have to determine the sjzatiah region as-
sociated with each of them. The basic intuition is that given a t(iple v), we want to
identify the instructions that, directly or indirectly, use the value a¥ailable atp, and

so might potentially benefit from specialization (cf. Figure 5.1).

Specialization

region for
(p.r.v)

Figure 5.1: Specialization region
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We first make precise the notion of an instruction using a value “directly or indi
rectly.” Given a program poinp and register, we say thatp,r) influencesan instruc-
tion | if (i) | uses the value afat p; or (ii) there is an instructiod at a program poinp’
such thatl defines a registat, (p,r) influences], and(p’,r’) influenced. Then, given
atriple(p,r,v), the specialization region for this triple is defined to be the smallestfset

basic blocksR such that
— the basic bloclB, containingpis in R;

— if (p,r) influences an instructionoccurring in a basic bloc;, andp dominates

B, thenB, isinR; and

— if BisinR, B # By, andB' is a (immediate) intra-procedural predecessoB af

the control flow graph of the program, thBhis in R.

It is not hard to see that, given a specialization trier, v), the basic blociBy, contain-
ing p dominates every block in the specialization region of this triple. This isseary
for correctness: we have to ensure that any execution path that canheagetializa-
tion region of this triple must pass through the test insertqa at
There are two issues that are not addressed by this definition of speaalizgions.
The firstis that, given a triplép, r, v), it may happen thatp, r) influences an instructioin
but the basic blocB, containingl is not in the specialization region of this triple because
p does not dominatB,. This problem can be remedied by duplicating code so as to make
p dominateB,. The second is that, as given, this definition does not take into account
the size of a specialization region relative to the benefits obtained fsspéicialization.
It may happen that an instructidnin a blockB, that is very far away from the point
p is influenced by the value of a registeat p. If we includeB, in the specialization

region, it is necessary to also include all of the blocks betwgandB,, even though
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these blocks may not benefit from specialization. This could, in extreme cagesisgi

to large specialization regions in order to include distant influenced insinsctiThis
can be handled using a notionaénsityof influenced instructions, analogous to the no-
tion of density of case labels used for code generatiosart ch statements [9, 44], to
limit the specialization regions to code that contains a sufficiently high prapoofiin-
structions that would benefit from the specialization. Curre@ly, o neither duplicates

code nor does it take the density into account.

5.2.4.3 Transforming the Program

The code transformations that are effected during specialization can banyoiteed.

They can depend on the type of instruction being specialized, the operand beingspecial
ized for, and the particular value of the operand. They can cause nontrivialctesing

of the control flow graph of the program, e.g., when the outcome of a conditional branch
can be determined. Because of the involved nature of these transformatiorssn@ad

this functionality is already available elsewhere in our system in themesithat imple-

ment constant propagation and constant folding (cf. Section 4.2.1), we do not have any
separate code to implement all these transformations specifically fog-pabfile-based
specialization. Instead, when specializing for a trigdev, r), we simply create a clone of

the specialization region for that triple and insert a test at program paivat tests and
transfers control to the cloneris value is now (cf. Figure 5.2). No further work specific

to value-profile-based specialization is necessary beyond this: the apta@alization

of the code then takes place in the course of normal constant propagation and constant

folding/strength reduction.
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g

subq r,v,r
bne r, Bc|one

B spec Blone

Figure 5.2: Specialization transformation

Given a specialization triplép,r,v), a variety of idioms may be used to implement
the test inserted at the program pomtdepending on the magnitude of the valuand
whether or not there is a free register available. If a free regisieavailable, we simply
compute the difference afandv into r’, then conditionally branch to the cloned code
if ' is not zero. If there are no free registers available; i small enough to be an

immediate operand the following pair of instructions is inserted (cf. Figure $.2)

subg r, v, r #r =71 -V
bne I’, Bdone # |f (r # O) gOtO Bdone;

# else fall through to Bgpec

To compensate for the effect of teebq instruction, we add the instructionddq r,

v, r’atthe entry to both the original specialization region and its clone.

3The meaning of the Alpha machine instructions is explained in Appehdi
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The actual specialization subsequently takes place during constant propagation and
constant folding (cf. Section 4.2.1). Note, that constant propagation is able to derive
information from conditionals [76]. If a basic block ends withkeety r, ... ’in-
struction (“branch ifr is 0”), then the successor of this block on the true-branch will
receive the information thatcontains 0, while that on the false-branch will receive the
information thatr is non-zerojone instructions (“branch if not equal to 0”) are treated
analogously. This turns out to be crucial for carrying out value specialization.

For the transformation sequence described above, constant propagation determines
from the instructionbne r, Bgone inserted as discussed above, that the regrsteas
the value O at entry to the successor along the false-branch, i.e., theBajpgkFrom
this, it determines that after the instructicmddq r, v, r’in Bspes the register
has the valuer. This information is then propagated through the code fragment being
specialized, and is used to carry out various optimizations as discusses abov

As an example of the effectiveness of our approach consider the code in Figure 5.3,
which is part of the functioki | | ti me() inthe SPEC95 benchman88ksi m The
left hand side shows the unspecialized code. The code on the right hand side has been
specialized for16 = 1. The number of instructions is significantly reduced. Note, that
the code shown represents a loop and that the test whetber 1 hold occurs outside

of this loop.



| oop: cnpul t
| da
cnovne
[ dl
subl
st
cnpul t
| da
cnovne
[ dl
subl
st
cnpul t
| da
cnovne
[ dl
subl
st
cnpul t
| da
cnovne
| da
subl
cnpul t
st

bne

re,
ri,
ro,
rz2,
re,
ro,
rz,
ri,
ro,
rs,
r2,
ro,
rs,
r2,
ro,
ri,
rs,
ro,
ri,
r25,
ro,
ra,
ri,
r4,
ri,
ro,

ri6, ro | oop:
0(r16)

re, rl

4(r4)

rl,r0

0(r4)

rie, ro

0(r16)

r2, rl

8(r4)

rl,r0

4(r 4)

rie, ro

0(r16)

rs ,r2

12(r 4)

r2 ,ro0

8(r4)

rie, ro

0(r16)

ri, r25
16(r 4)

r2s, rl
r3 ,r0

-4(r4)

| oop

(a) unspecialized

cnpul t
| dl
subl
st
cnpul t
| dl
subl
st
cnpul t
| dl
subl
st
cnpul t
| da
subl
cnpul t
st

bne

r3i,
ri,
re,
ro,
r31,
r2,
ri,
ro,
r31,
ri,
r2,
ro,
r3i,
r4,
ri,
ra,
ri,
ro,

re ,ro
4(r 4)
ro ,r0
0(r4)
rl, ro0
8(r4)
ro,ro
4(r 4)
r2 ,r0
12(r 4)
ro ,r0
8(r4)
ri,r25
16(r4)
r2s5,r1
r3 ,ro0
-4(r4)

| oop

(b) specialized for16=1
Figure 5.3: Effect of value specialization on a node88ksi m : kil | ti me()
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We have also implemented predicate profiling (cf. Section 5.2.3) for resolvinggpoint
aliasing relationships. If we can determine whether or not two pointers iaseslin a
frequently executed fragment of code, we can use this information in aywafiep-
timizations, including the avoidance of redundant memory accesses, and intinstruc
scheduling. For example, in the SPEC95 benchm®&®&ksi m predicate profiling al-
lows us to determine that three pointers (registépsl7,andr18) in a heavily executed
loop within the functional i gnd() are usually not aliased; this information is used
to eliminate several redundant memory accesses and thereby effectfeangripeed
improvement. Figure 5.4 shows the unspecialized code. The specializeohvefshe
code is shown in Figure 5.5. The number of instructions has been reduced by one third.
Note, that the code shown represents a loop and that the test whether the prediicate

occurs outside of this loop.



| oop:

[ dl r3, 0(rl18)
subl r27, 4, r27
[ dl ro, 0(r2)
and r3, 1, r3
bi s ro, r3 ,r0
st ro, 0(r2)

[ dl ro, O(r18)
zapnot r0, 15, rO
srl ro, 1, r3
st r3, 0(rl18)
| dl ro, 0(rl7)
sl | ro, 31, rO
bi s r3, rO,ro0
st ro, 0(rl18)
[ dl ro, 0(rl7)
zapnot r0, 15, rO0
srl ro, 1, r0
st ro, 0(rl7)
[ dl ro, O(r18)
| dl r3, 0(r2)
and ro, 1, r0
bi s r3, rO,ro0
st ro, 0(r2)

[ dl
zapnot
srl

st

| dl
sl |
bi s
st

| dl
zapnot
srl
st

[ dl

| da

| dl
and
bi s
st

| dl
zapnot
srl
st

[ dl

sl |

ro,
ro,
ro,
r3,
ro,
ro,
r3,
ro,
ro,
ro,
ro,
ro,
ro,
ra,
r3,
ro,
r3,
ro,
ro,
ro,
ro,
ro,
r3,
r3,

0(r18)
15, rO0
1, r3
0(r18)
0(r17)
31, r0
ro ,r0
0(r18)
0(r17)
15, rO
1, r0
0(r17)
0(r18)
-4(r27)
0(r2)
1, r0
ro ,r0
0(r2)
0(r18)
15, r0
1, rO
0(r18)
0(r17)
31, r3

bi s
st
| dl
zapnot
srl
st
| dl
| dl
and
bi s
st
| dl
zapnot
srl
st
| dl
sl
bi s
st
| dl
zapnot
srl
st

bge

ro,
ro,
ro,
ro,
ro,
ro,
ro,
r3,
ro,
r3,
ro,
ro,
ro,
ro,
r3,
ro,
ro,
r3,
ro,
ro,
ro,
ro,
ro,
ra,
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r3 ,r0
0(r18)
0(r17)
15, r0
1, r0

0(r17)
0(r18)
0(r2)

1, rO

ro,r0
0(r2)

0(r18)
15, r0
1, r3

0(r18)
0(r17)
31, r0O
ro,ro
0(r18)
0(r17)
15, rO
1, r0

0(r17)

| oop

Figure 5.4: Unspecialized code fragment fra88ksi m : al i gn()



| oop:
| dl
subl
| dl
and
bi s
zapnot
srl
| dl
sl |
bi s
zapnot
srl
addl
and
bi s
zapnot
srl
addl
sl |
bi s
zapnot
srl

addl

Figure 5.5: Specialized code fragment froB8ksi m : al i gn()

r4, 0(r18)

r27, 4, r27

ro, 0(r2)
r4,1,r3
ro,r3 ,r7
r4,15,r0
ro,1,r4
ro,o(r17)
ro,31,r3
r4,r3 ,r6
ro,15,r0
ro,1,r5
r7,r31,r3
re,1,ro0
r3,ro ,r4
re,15,r0
ro,1,r3
rs, r31,r0
ro,31,r0
r3,r0 ,rb6
rs,15,r0
ro,1,r0
ro,r31,r5

| da
addl
and
bi s
zapnot
srl
sl |
bi s
zapnot
srl
addl
and
bi s
st
zapnot
srl
addl
sl |
bi s
st
zapnot
srl
st

bge

r7,-4(r27)
r4,r31,r3
re,1,ro0
r3,ro ,r4
re,15,r0
ro,1,r0
rs,31,r3
ro,r3 ,r0
r5,15,r3
r3,1,r5
r4,r31,r4
ro,1,r3
ri,r3 ,r3
r3,0(r2)
ro,15,r0
ro,1,r3
r5r31,r0
ro,31,r0
r3,ro,ro0
ro,0(r18)
r5,15,r0
ro,1,r0
ro,o(rl7)
r7,1 oop
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5.3 Experimental Setup

For the experimental evaluation we used the 18 programs from the SPEC95 benchmark
suite [65]. The programs were compiled with the DEC C (FORTRAN) compiler V5.2-
036 (V3.8-064) invoked asc - O4 (f 77 - X4), with additional linker options-(r

-d -z -non_shar ed) to retain relocation information and produce statically linked
executable$. Both the initial execution frequency profiles as well as the value profiles
for each program were obtained using the SPEC95 training inputs; the executasn tim
reported were then obtained using the SPEC95 reference inputs.

The timings were obtained on a lightly loaded DEC Alpha workstation with a 300
MHz Alpha 21164 processor with a split primary cache (8 kB each of instruction and
data cache), 96 kB of on-chip secondary cache, 2 MB of off-chip backup cache, and 512
MB of main memory, running Digital Unix/Alpha V4.0B (Rev. 564). In each case, the

execution time reported is the smallest time of 10 runs.

5.4 Experimental Results

Table 5.1 compares, for each benchmark, the total number of program points that could
have been profiled/specialized (column 2) with the number that were actuafiiegr
(column 3) and the number that were then specialized (column 4). This indibates t
our computation of the cost/benefit tradeoffs is highly selective: the small nuofiber
points chosen for profiling keeps the value profiling overhead small, while thé sma

number of points chosen for specialization keeps the code growth modest.

4We use statically linked executables becadiseo relies on the presence of relocation information
for its control flow analysis. The Digital Unix/Alpha linkérd refuses to retain relocation information for
non-statically-linked executables.
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Program #Points| #Profiled| #Specialized
conpress | 15536 30 0
gcc 264020 2944 219
go 63895 348 4
i ] peg 46859 103 2
[i 28168 54 5
nmB8ksim | 36909 106 8
per | 78976 192 5
vortex 97037 55 6
appl u 92323 171 7
apsi 108705 184 20
f pppp 90288 102 6
hydr o2d 92276 139 6
mgrid 85826 10 1
su2cor 93673 111 5
SWi m 83660 26 0
toncatv 82586 16 1
t urb3d 90543 67 5
wave 109267 123 10

Table 5.1: Extent of profiling and specialization

Table 5.2 documents the code growth caused by value specialization. Columrs2 state
the code size of the benchmarks optimized with #he o optimizer (cf. Chapter 4)

without value specialization, column 3 states the size with value spgtiah. Column
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4 has the ratio. The code growth is very moderate, especially for the intdggsatof the
benchmarks where it does not exceed 1%. For floating point subset it does not exceed

3.5%.

Program PlainAl t o (kB) | Specialized (kB) Ratio
conpr ess 74688 74688| 1.000
gcc 1183488 1195584| 1.010
go 296832 297920| 1.004
i j peg 213312 213376/| 1.000
li 125056 125120| 1.001
nmB8ksi m 174848 175296| 1.003
per | 357248 357568/ 1.001
vort ex 433216 433236/ 1.000
appl u 427712 442624| 1.035
apsi 494656 502208 1.015
f pppp 417728 418816/| 1.003
hydr o2d 427264 437632| 1.024
ngrid 399744 399780| 1.000
su2cor 433600 442432| 1.020
swi m 388672 388672| 1.000
t oncatv 387008 387024| 1.000
tur b3d 421056 422592| 1.004
wave 498432 509632 1.022

Table 5.2: Code growth due to specialization
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Program PlainAl t o (sec)| Specialized (sec) Ratio
conpr ess 259.8 259.8| 1.000
gcc 232.9 229.8| 0.987
go 304.0 299.3| 0.985
i ] peg 328.1 327.9| 1.000
[i 254.6 248.8| 0.977
nB8ksi m 224.2 194.3| 0.867
per | 182.0 175.1| 0.962
vortex 316.4 314.2| 0.993
appl u 357.6 354.4| 0.991
apsi 194.5 189.6| 0.975
f pppp 418.2 393.7| 0.941
hydr o2d 425.9 426.0| 1.000
nmgrid 339.9 328.6| 0.967
su2cor 217.0 214.7| 0.989
sWi m 265.0 264.9| 1.000
toncatv 283.1 279.2| 0.986
turb3d 336.2 336.5| 1.001
wave 223.7 217.9| 0.974

Table 5.3: Execution time impact of value-profile-based specialization

The timing measurements are shown in Table 5.3. Column 2 states the execution
time of the benchmarks optimized with tAket o optimizer without value specialization,

column 3 states the execution time with value specialization. Column thbastio. It
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can be seen from these numbers that automatic value-profile-based spgoralcan
yield significant performance improvements for nontrivial programs. The progtaahs t
benefit the most arei , nB8ksi m per | ,apsi ,f pppp, andngri d.

The sources of performance improvements for these benchmarks are discussed belo
There is, however, one caveat. In our system, value-profile-based sgsmalis carried
out after subroutine inlining. Because of this, the code structure encountered during
specialization, and the subroutines associated with the specialized agdeefits, may

not always correspond to those of the source program.

I i : Sequences of independent conditionals in functidnsval () andsweep() are
transformed so that the common case is tested firsswiAt ch statement in the
functionl i vecar () is transformed so that the common case did not go through

a jump table.

nB8ksi m : Predicate profiling allows us to determine that three pointers in the func-
tion al i gnd() are unaliased in the common case, allowing the elimination of
several load and store instructions in that function. The fundtidnl ti me() is

specialized for an argument of 1.

perl : The functionmemrmove() is specialized for the single byte move. The (in-
ternal) functiont sDi vi de64Unsi gned() , which emulates integer division
(since the Alpha does not have an integer division instruction), is specialized for

the divisor 16.

apsi : Specialization allows several multiplication operations in the sulbrepset ,
and subroutines inlined into it, to be strength-reduced because one of the operands

is zero.
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f pppp : The common case for a computed goto statement in the subraitirid is

specialized.

nmgri d : Specialization allows a multiplication operation in subroutiresi d to be

strength-reduced because one of the operands is zero.

Calderet al. report significant benefits from specializing tmedr 02d benchmark [12].
To our surprise, however, we were not able to find significant specializationtopices
in this program: an examination of the code suggests that this may be due to improve-

ments in the DEC FORTRAN compiler since their work was carried out.
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CHAPTER 6

CODE COMPRESSION

In recent years there has been an increasing trend towards the incorporation-of
puters into a wide variety of devices, such as palm-tops, telephones, embedded con-
trollers, etc. In many of these devices, the amount of memory availabhaited, due
to considerations such as space, weight, power consumption, or price. At tharsame t
there is an increasing desire to use more and more sophisticated softvgrehi de-
vices, such as encryption software in telephones, or speech or image proce&siages
in laptops and palm-tops. Unfortunately, an application that requires more mémaor
is available on a particular device will not be able to run on that device. Thikesna
desirable to try and reduce the size of applications where possible. This chgpitmes
the use of object code modification to reduce code size and describes the implamentat
and experimental results of a code compressor basédl ba.

Our envisioned application scenario rules out certain compression schdmes,
scribed in the introduction of this dissertation. Compression that resultprogram
representation that needs to be decompressed before execution is undesirdlte for
reasons. First, extra memory is necessary to decompress the program. Seedinue
overhead for decompression may be prohibitively big. Also undesirable arprigtige
schemes because they will slow down execution and require the introduction ef som
form of runtime system and possibly changes to the operating system. Hence wa make

tradeoff between compression ratio and execution speed/system compglexity.

1Using profiling information we could take this even further by exiahg hot spots in the program
from compression. However, we have notimplemented this in ouesyget.
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Reductions in code size in our system come from two sources: aggressive {ogerpr
dural) application of what are essentially classical compiler analysgstimizations;
andcode factoringa term we use to refer to a variety of techniques to identify and “fac-
tor out” repeated instruction sequences. Even though our compression techniques are
applied to object code, they can be quite easily incorporated into compilersieaga
interprocedural code transformations.

The overall structure of the code compressor is depicted in Figure 6.1. It is very

similar to the optimizer described in Chapter 4.

Base Optimizations’

One-time Optimizations’

Base Optimizations’

Code Compression

Code Positioning

Scheduling

Figure 6.1: Phases of the code compressor baséd bo

Base Optimizationsand One-time Optimizations have been changed so that op-
timizations that may increase code size are not invoked, e.g., there will bdimog

except for functions that have only a single call site. A few factoring transtboms
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have been added to tiBase Optimizationsto reduce code size. The new ph&sde
Compressioncontains the gist of our compression transformations.

The following sections describe the most relevant factoring transformagiens
formed by the code compressor, and evaluates their effectiveness on then®BEC
benchmark suite.

Related Work: Much of the earlier work on code compression, aiming at yielding
smaller executables treated an executable program as a simple kugnse of in-
structions. Early work by Fraset al. used a suffix tree construction to identify repeated
instruction sequences within such a linear sequence [35]. Such repeated sequenece
then abstracted out into functions. Applied to a range of Unix/VAXultilitiess tech-
nique managed to reduce code size by a factor of about 7% on the average. A shortcom-
ing of this approach is that since it relies on a purely textual interpretatiarpodgram,
it is sensitive to superficial differences between code fragments, e.g.0 diiffetences
in register names, that may not actually have any effect on the behavior afdbe This
shortcoming was addressed by Baker, using parameterized suffix tredsy [6hoper
and Mclintosh, using register renaming [21] (Baker and Manber [7] discuss asapH
proach); and by Zastre, using parameterized procedural abstractions [77]airhielea
is to rewrite instructions so that instead of using hard-coded register nraregister)
operands of an instruction are expressed, if possible, in terms of a previowenoefer
(within the same basic block) to that register. Further, branch instructrengwaritten,
where possible, in pc-relative form. These transformations allow thex $tgfé construc-
tion to detect the repetition of similar but not lexically identical instimit sequences.
Cooper and MclIntosh obtain a code size reduction of about 5% on the average using
these techniques on classically optimized code (in their implementatassical opti-
mizations achieve a code size reduction of about 18% compared to unoptimized code).

Any approach that treats a program as a simple linear sequence of instructions, a
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the suffix-tree-based approaches mentioned above, will suffer from the disageaof

having to work with a particular ordering of instructions and basic blocks. Theye ma

be many reasons why two “equivalent” computations may map to different itistnuc
sequences in two different parts of a program. The first, and most obvious, ie¢hat t

may be differences in register usage and branch labels. Differences actiled se-
guence of instructions produced may also arise due to instruction scheduling, or because
of profile-directed code layout to improve instruction cache utilization [57].

Our approach to code compression will be somewhat different. Instead ohgeati
program as a simple linear sequence of instructions, we work with its (integhwoal)
control flow graph. We use a scheme similar to [7] to identify “similar” bdsibcks.

If two blocks that are similar are found to not be identical, we try to renaygsters—

using a technique somewhat different from that of Cooper and Mcintosh—in an attempt
to make them identical. We use the notions of dominators and post-dominators to de-
tect identical subgraphs of the control flow graph, larger than a single basic block, and
that can be abstracted out into a procedure. Finally, we identify and takatadesof
architecture-specific code idioms, e.g., for saving and restoring specifiofsetsisters

at the entry to and return from functions.

By showing how “equivalent” code fragments can be detected and factored but wit
out having to resort to purely linear treatments of code sequences *as in sigfizased
approaches), our main contribution is to set up a framework for code compresaton t
can be more flexible in its treatment of which code fragments are considegaivde
lent.” For example, while our current implementation searches for sets af blagks
that contain identical instruction sequences, it is straightforward to gkreethis com-
ponent of the system to consider use-def chains (cf. Section 3.2), and thereby handle dif-
ferences in the sequence of instructions arising out of instruction schedulingpdecis

Similarly, the treatment of single-entry single-exit regions in Section G&:dses on
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structural properties of control flow graphs rather than any particular leegaom: this
allows it to handle differences in code sequences arising out of profile-direatke lay-

out. We believe that the added flexibility gained from our approach can be useful in
improving the results of code compression. A secondary contribution is to show that
significant reductions in code size can be obtained without having to resort to eéxtsane
structures such as suffix trees, by using information already availagle tlee control

flow graph and dominator/postdominator trees.

6.1 Local Factoring

The local factoring transformation was inspired by an idea of Kretagd. [45]. It tries
to merge identical code fragments by moving them to a point that pre- or post-dominates
all the occurrences of the fragments. We have implemented a local variirg stheme

which we describe using the example depicted in Figure%.2.

2The meaning of the Alpha machine instructions is explained in Appehdi
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beq r0

subq r2,r1,r0

B /N

stq r7,4(r30)
addq r5,r6,r8
subq r5,r6,r9
stg r9,8(r30)
Idq r9,12(r22)
xor r5,r6,r0
stq r9,16(r23)
xor r19,r19,r19

T E

. |

addq r5,r6,r8
subq r5,r6,r19
stq r19,8(r30)
Idq r19,22(r22)
xor r5,r6,r0

stq r9,16(r23)

D v

Idq r19,22(r22)
stq r9,16(23)

(a) before

beq r0

subq r2,r1,r0
addq r5,r6,r8

-

stq r7,4(r30)
subq r5,r6,r9
stg r9,8(r30)
Idqg r9,12(r30)
xor r5,r6,r0
xor r19,r19,r19

sub r5,r6,r19
stq r19,8(r30)
ldqg r19,22(r30)
Xor r5,r6,r0

e v

D’ \

Idq r19,22(r22)

stg r9,16(r23)

(b) after

Figure 6.2: Local factoring
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The left hand side of the figure shows an assembly code flowchart with a condi-
tional branchlfeq r 0) in block A. Blocks B and C contain the same instructiaddq
r5, r6, r 8.’ Since these instructions do not have backward dependencies with any other
instruction in B or C, we can safely move them into block A just beforebthe instruc-
tion, as shown in the right hand side of Figure 6.2. Similarly, blocks B, C, and D share
the same store instructiost g r 9, 16( r 23) , and since these instructions do not have
forward dependencies with any other instruction in B, C,and D, they can bg sadeed
into block E. In this case it is not possible to move the store instruction framdBC into
A because, due to the lack of aliasing information, there are backward depersd@ncie
the load instructiond (dq) in B and C. In general, however, it might be possible to move
an instruction either up or down. In this case we prefer to move it down siosgng it
up will eliminate exactly one copy while moving it down might eliminate sal/eopies.

Our scheme uses register reallocation to make this transformation ffewteve. For
example, thesubq instructions in B and C write to different register® @ndr19). We
can, however, renam® tor19 in B, thereby making the instructions identical. Another
opportunity rests with theor instructions in B and C. Even though they are identical we
can not move them into A because they write regidberhich is used by the conditional
branch. ReallocatingO in A to another register which is dead at the end of A will
make the transformation possible. Dead registers can be conveniently fangdhes
interprocedural register liveness analysis (cf. Section 3.1).

Local factoring is invoked together with the base optimizations. It will noven
instructions that change the flow of control nor will it create new basic blocks. Bueunli
factoring schemes described subsequently it might change both the registediaailand

the instruction schedule.
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6.2 Intraprocedural Tail Merging or Cross Jumping

Tail merging is a classical compiler transformation [55]. We describsiiitg the example

depicted in Figure 6.3.

A Koy ey

stq r7,4(r30) Idqg r9,16(r23)
stq r7,4(r30) Idq r9,16(r23)
addq r5,r6,r8 addq r5,r6,r8 N
subq r5,r6,r9 subq r5,r6,r19 addq r5,r6,r8
stq r9,8(r30) stq r19,8(r30) subq r5,r6,r19
xor r2,r1,r0 xor r2,r1,r0 stq r19,8(r30)
beq r0 beq r0 xor r2,r1,r0

beq r0

C Dy c A

(a) before (b) after

Figure 6.3: Cross jumping

We first look for basic blocks liké\ andB with a common tail of instructions and
which branch to the same basic block(s). This can be done efficiently by going baskwar
and searching the predecessors of a basic block for common tails. A new basic block
AB' is then created containing the common instruction sequencesArant B which
are eliminated from their original locations. The shrunken basic blétkad B’ will
branch toAB'.

Tail Merging is invoked together with the base optimizations. It will perfoegister
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renaming to make tails more similar but does not reschedule them. It only sraitge

of basic blocks within the same function.

6.3 Procedural Abstraction

Procedural abstraction is the inverse operation of inlining (cf. Section 4.&i¥en a
single-entry single-exit code fragmedtprocedural abstraction @finvolves(i) creating

a procedurdc whose body is a copy @@; and(ii ) replacing the appropriate occurrences

of C in the program text by a function call tiy. While the first step is not very dif-
ficult, at the level of assembly or machine code the second step involveke avibirk.
Procedural abstraction can in principle be done by a compiler but often the iierme
ate representations used in the compiler do not provide enough support for this kind of
transformation. What is needed is the possibility to invoke a subroutine while- ma
taining the environment (stackframe and register contents) of the callegheAibject

code level such a subroutine invocation mechanism is usually provide by some sort of
“lump-and-link” instruction, that transfers control to the callee and at theegane puts

the return address into a register, but leaves the stackframe and theegfiséers un-
touched. Liveness analysis (cf. Section 3.1) will usually provide us with akpessible
scratch registers to hold the return address. Which one do we choose? A siatipeim

is to calculate, for each registerthe number of occurrences of code fragm@rthat

could use as a return register. A register with the highest such figure of merit is othose
as the return register fdg. If a single instance ofc, using a particular return register,

is not enough to abstract out all of the occurrenceS of the program, we may create
multiple instances ofc that use different return registers. We use a more complicated
scheme when abstracting function prologs (cf. Section 6.3.3.1) and regions of multiple

basic blocks (cf. Section 6.3.2).
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6.3.1 Procedural Abstraction for Individual Basic Blocks

Even though a basic block is a special case of single-entry single-exit regonardled
separately because we do not require basic blocks to be identical in order &ztism.
We merely require that they be similar, viz. identical up to registexcation.

In order to determine whether two basic blocks are similar we adapt a techrogue f
[6] and replace each mention of a register inside a basic block by the distaeasyrad
in number of instructions) to its definition. These modified basic blocks are thexdsort
yielding a partition of similar basic blocks.

Next we examine each set of the partition in turn and attempt to conveitasim
basic blocks into identical basic blocks. The basic idea is very simple: eegjiate
renamed “locally,” i.e., within the basic block; and if necessary, regtsteegister moves
are inserted, in new basic blocks inserted immediately before and aftbloitiebeing
renamed, so as to preserve program behavior. An example of this is shown in@igjure

where the we try to make the similar basic blocks BO and B1 identical.

3We use a fairly canonical order: first considering the number instmgtiothe basic block, then the
opcodes, and finally the (transformed) register names
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r20 =r6
{rl,r2,r6} live r4 =rl \ /
\’/ ”””” \ / o Y —
5 =r4+1 r5 =r4+1
BO 0= 141 Bl 5 _ 411 r3 = r5+r2 r3 = r5+r2
rl =r0+r2 r3 = r5+r2 6 =r5r3 6 =r5%r3
15 = ro*rl 16 = 53 ro = r3;r6 ro = r3;r6
r3 =rl-r5 r0 = r3-r6 r4 =r6*2 r4 =62
r4 = r5*2 r4 = r6*2 Y
N / \ r3 =10 / \
\ ré =r20
{r3,r4 r6} live /*
(a) before (b) after

Figure 6.4: Example of basic-block-level register renaming

There are in general three reasons that keep us from simply copying a refjcster

cation from one basic block to a similar basic block.

e Input registers. The two basic blocks might use registers that were not defined in
the basic block and those might be different. This is exemplified by the udamf
BO andr4 in B1, and can be compensated for by a introducing an additional move

instructiont4 = r1'.

Output registers. The two basic blocks might define registers that are used outside
of the basic block and those might be different. This is exemplified by the defi-
nition of r3 in BO andr0 in B1, and can be compensated for by a introducing an
additional move instructionr'’3 = r0’. A subtle point is that we also need to

make sure that the definition 00 in B1 corresponding to the definition o8 in
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BO is still available at the end of B1. If not the basic blocks are not reallylaim

and therefore we cannot make them identical.

e Live range conflicts. A register which is live through all of BO might be defined
in B1, thereby destroying a value needed after BO. We compensate for this by
temporarily moving this register into another unused register. This is eXerdpl

by register6 which is temporarily moved intc20.

If none of these problems exists we can indeed copy the register allocation from one
basic block literally to the other. If a problem exists, we have shown howlt@ st by
adding move instructions. We keep track of the number of move instructions agcess
and will only add them if there is an overall benefit after abstraction. Nué the
number of necessary move instructions required to make BO identical to @t chifer
from the number of necessary move instructions to make B1 identical to BOtheee.,
relationship is asymetric. In order to cope with this we iterate oveh sat of similar
basic blocks several times, trying to convert similar basic blocks intatickd ones. In
the first round we do not allow any move instruction to be added, in the next round we
allow up to one move instruction to be add, then up to two and do on.

It also possible to employ some sort of meet in the middle approach to reggster
naming, where we do not try to make one basic block identical to another but where we
just try to make them identical by changing both. We have not implemented thisechem
yet.

A different approach to register renaming is described by Cooper and Mcintosh [21]
They carry out register renaming at the level of entire live ranges: thahsn renaming
a registerrO to a different registerl, the renaming is applied to an entire live range
for r0. This has the advantage of not requiring additional register moves before and

after a renamed block, as our approach does. However, it has the problem that regis



renaming to allow the abstraction of a particular pair of basic blocks masfentewith

the abstraction of a different pair of blocks.

Live range for rO
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BO \‘
r0 = load(...)| |
| Live range for rl
I —_— - — - = = =
Bl : | B3 \\
L=r0+rl | 1 M0->15 | r1=r5+r1 | |
r3=rl+r2 | | 10<-r5 | r3=rl+r2 |
| | !
|
B4 B2 | | |
r2 = r3+r0 (2 = r3+10 | | | BS | B6
! r1 =r3-r5 | r1 =r3-r5
rl =r0+r2 4—‘> rl = r0+r2 | : - :
r2 =r1*r0 =140 || | 12=1045 | o r2 = r0+r5
s J | r3=r574 | r3 = 5*r4
v |
________ |

Figure 6.5: Interference effects in live-range-level register renaming

This is illustrated in Figure 6.5, where solid double arrows indicate idertiasilc
blocks, while dashed double arrows indicate blocks that are not identical but wimnch ca
be made identical via register renaming. Blocks BO, B1, and B2 comprise a tige ra
for registerr0, while B3 and B5 comprise a live range fdr. We can rename0 tor5 in
the live range for0, so as to make blocks B1 and B3 identical, but this will cause blocks
B2 and B4 to not be identical and therefore not abstractable into a function. Veédstan
renamer5 to r0 in the live range forl so as to make it identical to B1, but this will
interfere with the abstraction of blocks B5 and B6. Because of such inteckeedfects,
it is not clear whether live-range-level renaming produces results thatemessarily

superior to basic-block-level renaming. Notice that the problem could be addi®ssed
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judiciously splitting the live ranges: indeed, the local renaming we use carebeaséhe
limiting case of live-range-level renaming if splitting is applied undllive range spans

more than one basic block.

Control Flow Separation

The approach described above will typically not be able to abstract two baskshihat
are identical except for an explicit control transfer instruction at the end r&dson for
this is that if the control transfers are to different targets, the blocHbeitonsidered
to be different and so will not be abstracted. Moreover, if the control tramsguction
is a conditional branch, procedural abstraction becomes complicated by the fasictha
possible return addresses have to be communicated.

To avoid such problems, basic blocks that end in an explicit control transfeugast
tion are split into two blocks: one block containing all the instructions in the blrck
for the control transfer, and another block that contains only the control transfiercnst
tion. The first of this pair of blocks can then be subjected to renaming and/or procedural

abstraction in the usual way.

6.3.2 Single-Entry/Single-Exit Regions

The discussion thus far has focused on the procedural abstraction of individual basic
blocks. In general, however, we may be able to find multiple occurrences of aregde f
ment consisting of more than one basic block. We could, of course, factor out each basic
block individually. But factoring out the entire region is more promising. In order to
apply procedural abstraction to such a redi®at every occurrence &tin the program,

we must be able to identify a single program point from which control efReed a
single program point to which control returns after leavitiglt is not hard to see that

any set of basic blockR with a single entry point and a single exit point corresponds
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to a pair of pointgd, p) such thatd dominates every block iR and p post-dominates
every block inR; conversely, a pair of program poinfs, p), whered dominatesp and

p post-dominatesl, uniquely identifies a set of basic blocks with a single entry point
and single exit point. Two such single-entry single-exit regiR@mdR are considered

to be identical if it is possible to set up a 1-1 correspondentetween their members
such thaB, ~ B if and only if (i) By is identical toB/; and(ii) if By is a (immediate)
successor oB; under some conditio@, andB, is a (immediate) successor Bf under

the same conditio@, thenB; ~ B,. In order to determine whether two regions are iden-
tical we recursively traverse the two regions, starting at the entry, moakverifying that
corresponding blocks are identical.

After procedural abstraction has been applied to individual basic blocks, wefydenti
pairs of basic blockéd, p) such thad dominatesp and p post-dominated. Each such
pair defines a single-entry single-exit set of basic blocks. These sets of basks bl
are then partitioned into groups of identical regions, which then become candidiates f
further procedural abstraction.

To simplify the partition building process we compute a fingerprint for each region
so that regions with different fingerprints will necessarily be differehiese fingerprints
are, 64-bit values: there are 8 bits for the number of basic blocks in the region atsd 8 bi
for the total number of instructions, with the bit pattdrh. . . 1 being used to represent
values larger than 256; and the remaining 48 bits are used to encode the firsdliagcor
to a particular preorder traversal of the region) 8 basic blocks in the regidm eath
block encoded using 6 bits: two bits give the type of the block, and four bits for the
number of instructions in the block. The number of pairwise comparisons of fingerprints
is reduced by distributing the regions over a hash table.

It turns out that applying procedural abstraction to a set of basic blocks is not as

straightforward as for a single basic block, especially in a object code modifyipig-
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mentation such as ours. The reason is that, in general, when the procedunecatieg
to such a single-entry single-exit region is called, the return addres®evplut into a
register whose value cannot be guaranteed to be preserved through that entire procedur
e.g., because the region may contain function calls. This means that the returasaddr
register has to be saved somewhere, e.g., on the stack. However, allacetixiga word
on the stack, to hold the return address, can cause problems unless we are abiwef
cating this space at the top of the stack frame can cause changes in theetigritcof
other variables in the stack frame, relative to the top-of-stack pewvtele allocating it
at the bottom of the stack frame can change the displacements of any argumedmsehat
been passed on the stack. If there is any address arithmetic involvingtikepsiinter,
e.g., for address computations for local arrays, such computations may be affected by
changes in displacements within the stack frame. These problems are sdraasiba
to handle if the procedural abstraction is being carried out before code generaipat e
the level of abstract syntax trees [32]. At the level of assembly code [21, 35anine
code (as in our work), it becomes considerably more complicated. There are,dipwev
some simple cases where it is possible to avoid the complications asdatititéaving
to save and restore the return address when introducing procedural abstradeoas.
we identify two such situations.

In the first case, if we are given two identical regidds, po) and(di, p1), wherepg
and p; are return blocks (blocks from which control returns to the caller), there is no
need to use procedural abstraction to create a separate function for tlessgions.
Instead, we can use an interprocedural version of the cross jumping transborijcht
Section 6.2). The code in the regi¢dhy, p1) is then simply replaced by a branchdg

The transformation is illustrated in Figure 6.6.



142

R W/ /v%

doE dE d|:|

R

return

F

return

by

return

(a) before (b) after

Figure 6.6: Merging regions endingliret ur ns via cross jumping

In the second case, given two identical regi¢dg po) and (ds, p1) that we would
like to abstract into a procedure, suppose that it is possible to find a regthtris (i)
not live at entry to either of these regions; &iiid whose value can be guaranteed to be
preserved up to the end of the regions under consideratioan be either a general-
purpose register that is not defined within either region, or a callee-savestieretijiat
is already saved and restored by the functions in which the regions under congiderat
occur). In this case, when abstracting these regions into a procedti®not necessary
to add any code to explicitly save and restore the return addregs foe instruction to
call p can simply put the return addressrinand the return instruction(s) withip can
simply jump indirectly through to return to the caller.

If neither of these conditions is satisfied, we determine whether the returnsaddre
register can be safely saved in memory at entry,tand restored at the end. For this, we
use a conservative analysis to determine whether a function may have argpassad

on the stack, and which, if any, registers may be pointers into the stack.fr@men a
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set of candidate regions to be abstracted into a representative procedutegckedle

following:

1. For each function that contains a candidate region, it must be safe, withtrespec
to the problems mentioned above, to allocate a word on the stack frame of the

function.
2. There must be a registeyfree at entry to each of the regions under consideration.

3. There must be a register free at the end of each of the regions under considera-

tion.

4. There should not be any callsget j np( ) -like functions that can be affected by

a change in the structure of the stack frame.

If these conditions are satisfiegallocates an additional word on the stack on entry and
saves the return address (passedryjanto this location; and loads the return address
from this location (using1) and restores the stack frame on exit. The current imple-
mentation of the safety check described above is quite conservativetinatsent of
function calls within a region. In principle, if we find that space can be aléztan the
stack but have no free registers for the return address at entry or exitleoatbstracted
function, it should be possible to allocate an extra word on the stack in ordeetojfra

register, but we have not implemented this yet.

6.3.3 Architecture-Specific Idioms

Apart from the general-purpose techniques described earlier for detecting tnadt g
out repeated code fragments, there are machine-specific idioms that can keblyrofit
exploited. In particular, the instructions to save and restore registerseturn address

and callee-saved registers) in the prolog and epilog of each function dgreaaé a
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predictable structure because those registers are saved at predictaliEnaevithin
the stack frame. For example, the standard calling convention for Digrted/ Alpha
treats registera (or r26) as the return address register and regist@tdroughr15 as
callee-saved registers; these are saved at localipsp) , 8( sp) , 16(sp), and so on
wheresp denotes the stack pointer register. Abstracting out such instructions can yield
considerable savings in code size.

The register save/restore instructions in function prologs and epilogs tyfiakdy
the same sequence. In function epilogs this sequence of actions is reversedekltvee
fact that different function prologs carry out a similar sequence of events doeapigt i
that the same instruction sequences are encountered in the prologs of differdothfinct
instruction scheduling can, and does, cause other instructions to be interspeloged i
tween the code to save registers; a similar comment applies to functioge@Because
of this, the techniques described earlier, which rely on identifying identisaluction
sequences and/or basic blocks, may not always be able to factor out the instructions for
saving/restoring registers in function prologs and epilogs. Instead, they arediispe-

cially.

6.3.3.1 Abstracting Register Saves

In order to abstract out the register save instructions in the prolog of a furictido a
separate functiog, it is necessary to identify a register that can be used to hold the return
address for the call fronfi to g. Liveness analysis is employed to find such a register.
For each candidate registerwe first compute the savings that would be obtained if
were to be used for the return address for such calls. This is done by totaling ap¢for
function f wherer is free at entry taf, the number of registers savedfis prolog, i.e.,

the size of the prolog. We then choose a regist®ith maximum savings, and generate
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a family of functionsSavé,;,... ,Savéy, Savé, that save the callee-saved registers and
the return address register, and then return via regisfEne idea is that functioBave
saves registdrand then falls through to functiddave ;.

If a function has register available before the prolog code, and subsequently saves

registers’9, ..., rk, we can replace the prolog by a call3ave, .

fo: s 0 f1:
subqg sp, 32, sp ave g subq sp, 40, sp
stq rl5, 56(sp) bst 10, Save%

bsr r0, Save1 4

e
14 1 stq r14, 48(sp)

Save% %
stq r9, 8(sp)

Y1 Y1

\J

stq ra, 0(sp)
ret r0

Figure 6.7: Example for function prolog factoring

As an example, suppose we have two functibf¢) andf 1(), such thatf O()
saves registensd, ..., r14, andf 1() saves only regista9. Assume that registe0 is
free at entry to both these functions and is chosen as the return address.régestode
resulting from the transformation described above is shown in Figure 6.7.

It may turn out that the set of functions subjected to this transformation do not use
all of the callee-saved registers. For example, in Figure 6.7, suppose that ndwe of t

functions using return address regist@rsave registerl5. In this case, the code for the
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functionSavé, c becomes unreachable and is subsequently eliminated.

A particular choice of return address register, as described above, macoahafor
all of the functions in a program. The process is therefore repeated, using otherschoic
of return address registers, until either no further benefit can be obtainedfloraibns

are accounted for.

6.3.3.2 Abstracting Register Restores

The code for abstracting out register restore sequences in function epilogs iptoatige
analogous to that described above, but with a few differences. If we weaiepdy do

the opposite of what was done for register saves in function prologs, the code resulting
from procedural abstraction at each return block for a function might have tlogvfol

structure, with three instructions to manage the control transfers andostist&r update:

bsr r1, Restore # call register restore function
addqg sp, k, sp # deal | ocate stack frane

ret ra # return

If we could somehow move the instruction for deallocating the stack fraroghntfunc-

tion that restores saved registers, there would be no need to returntunthief f whose
epilog we are abstracting: control could return directlyf® caller (in effect realizing

tail call optimization). The problem is that the code to restore saved eegist used

by many different functions, which in general have stack frames of diffesieat, and
hence need to adjust the stack pointer by different amounts. The solution to thisyroble
is to pass, as an argument to the function that restores registers, the amatnitioyhe
stack pointer must be adjusted. Since the return address ragisseguaranteed to be

free at this point—it is about to be overwritten witts return address prior to returning
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control to f’s caller—it can be used to pass this argunfeince there is now no need
for control to return tof after the registers have been restored—it can return directly to
f's calle—we can simply jump from functioh to the function that restores registers,
instead of using a function call. The resulting code requires two instructiotesaohsf

three in each function return block:

nmove k, ra # sp needs to be adjusted by k

br Restore # junp to register restore function

The code in the function that restores registers is pretty much what one would.expec
Unlike the situation for register save sequences discussed in Section 6.3.Jiéedve
only one function for restoring registers. The reason for this is that there isetbtoe
call this function: control can jump into it directly, as discussed above.

[note that this is essentially cross jumping but interprocedurally and withrarpa
eter - the stack size]. This means that we do not have to generate differsians of
the function with different return address registers. The overall strectf the code is
analogous to that for saving registers: there is a chain of basic blocks, eachabf whi
restores a callee-saved register, with control falling through into thkebieck, which
saves the next (lower-numbered) callee-saved register, and so on. Theshaber of
this chain adjusts the stack pointer appropriately, loads the return addreagagfister,
and returns. There is, however, one minor twist at the end. The amount by which the
stack pointer must be adjusted is passed in regiateso this register cannot be overwrit-
ten until after it has been used to adjust the stack pointer. On the other haredthsgnc

memory location from whictl’s memory address is to be restored if i stack frame,

4In practice not all functions can be guaranteed to follow the standard calingention, so it is
necessary to verify that registex is, in fact, being used as the return address registér by
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we can't adjust the stack pointer until after the return address has been |oéaleal i

We get around this problem using the following instruction sequence:

addq sp, ra, sp # sp:

Sp + ra = new sp

subqg sp, ra, ra #ra:=sp - ra = old sp

ldg ra, O(ra) # ra := return address

ret ra

The resulting code for restoring saved registers, for the functions considetiee €x-

ample illustrated in Figure 6.7, is shown in Figure 6.8.

fo: Restore1

5 f1:
‘ move 32, ra ‘ \dg r15,¢56(sp) move 40, ra
S Restore, %
14\ 1dq r14, 48(sp)
Restore *
9
to f0's caller(s) Idg r9, 8(sp) to f1's caller(s)

Restore,, v
addq sp, ra, sp
subq sp, ra, ra
Idg ra, O(ra)
ret ra

Figure 6.8: Example for function epilog factoring

We go through these contortions in order to minimize the number of registers used.
If we could find another register that is free at the end of every function, we toardd

the return address into this register, resulting in somewhat simpler cooeeudr, in
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general it is not easy to find a register that is free at the end of everydandéfioreover,

since there is only one function that restores saved registers in the trapgf@ode,

the overall savings from this, even if we could find such a free register,dvoat be

very significant. Compared to the obvious implementation described at the begafining
this subsection, the resulting code reduces the number of instructions necessaty at e
function return block from three to two, i.e., with a net savings of one instruction, at
the cost of introducing three additional instructions into the function that absthects
register restore instructions. It is therefore able to achieve a net sacmgpared to

the obvious implementation, if there are at least four functions in the program whose
register restore actions can be abstracted as described above. Tmeweago to such
lengths to eliminate a single instruction from each return block is that @rere lot

of return blocks, amounting to about 4%—-8% of the basic blocks in a program (there is
usually at least one—and, very often, more than one—such block for each function). The
elimination of one instruction from each such block translates to a codeesiretion

of about 1%—2% overall (this may seem small, but to put it in perspective,d=mntbiat
Cooper and Mcintosh report an overall code size reduction of about 5% using suffix-tree

based techniques [21]).

6.4 Experimental Setup

For the experimental evaluation we used the 8 programs from the SPECint95 bekchmar
suite [65]. The benchmarks were compiled with the DEC C compiler V5.2-036 invoked
ascc - Ol, which is the highest optimization level, that does not perform code size
increasing transformations. Additional linker optiongli(-z -r -non_shared )

were needed to retain relocation information and produce staticallydiekecutables.

SWe use statically linked executables becafseo relies on the presence of relocation information
for the control flow graph construction. The Digital Unix/AlphaKer| d refuses to retain relocation
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No execution frequency profiles were used. The execution times reported erermated
using the benchmark reference inputs. The timings were obtained on a lightly loaded
DEC Alpha workstation with a 300 MHz Alpha 21164 (EV5) processor with a split
primary cache (8 kB each of instruction and data cache), 96 kB of on-chip secondary
cache, 2 MB of off-chip backup cache, and 512 MB of main memory, running Digital
Unix/Alpha V4.0B (Rev. 564). In each case, the execution time reported is thkesin

time of 10 runs.

6.5 Experimental Results

Table 6.1 compares, for each benchmark, the code size for the original (unoptimized)

version (Column 2), thél t o optimized version using the regular optimizer without

Program cc (kB) [norm] | Alto (kB)[n.] | Alto’ (kB)[n.] | Fac. (kB) [n.]

conpr ess 99 [1.000] 68 [0.691] 64 [0.651] 61 [0.612]
gcc 1362 [1.000]| 1083 [0.796] 1032 [0.758] 972 [0.714]
go 341[1.000]| 278[0.816] 266 [0.779]| 254 [0.744]
i j peg 262 [1.000] 186 [0.713] 178 [0.682] 166 [0.636]
li 179 [1.000] 115[0.647] 110 [0.615] 101 [0.568]
nB8ksi m 228[1.000]| 162[0.709] 152[0.666]|  142[0.621]
per | 435 [1.000] 324 10.745] 309 [0.710] 282 [0.650]
vortex 696 [1.000] 410 [0.589] 391 [0.562] 374 10.538]
Geom. Mean [1.000] [0.710] [0.674] [0.632]

Table 6.1: Impact of code compression on code size

information for non-statically-linked executables.
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been disabled (Column 4), and the smallest possible version using the fattansipr-

mations (Column 5). Normalized numbers relative to Column 2 are alsorpiegse

Using the factoring transformations we can reduce the code size by 36.8% in the

average compared to the original. Of the this reduction 4.2% is due to factoring whil

the rest is due to optimizations performedAiyt o.

Table 6.2 has the same structure as Table 6.1 but compares execution tinagkohste

code sizes. As expected, the extra reduction in code size due factoring is oliitpiaed

small penalty (7.5%) in execution time. However, on the average weithie %Y faster

than the original executable.

Program cc (sec) [norm]| Al t o (sec) [n.]| Al t o’ (sec) [n.]| Fac. (sec)[n.]
conpr ess 321.3[1.000]| 281.4[0.876]] 284.6[0.886] 289.4[0.901]
gcc 262.1[1.000]| 257.2[0.981]] 252.8[0.964] 260.6[0.994]
go 360.0 [1.000]| 298.0[0.828]] 299.4[0.832]] 317.5[0.882]
i j peg 327.1[1.000]] 324.1[0.991]] 329.3[1.007]|] 330.1[1.009]
| i 312.0[1.000] 265.0[0.849] 260.2[0.834] 314.7 [1.009]
nB8ksi m 400.3[1.000]| 272.2[0.680]] 287.2[0.717] 289.8[0.724]
per | 257.0[1.000] 214.4[0.834] 209.3[0.814] 230.6[0.897]
vort ex 470.4[1.000]| 351.9[0.748]] 359.1[0.763] 425.5[0.904]
Geom. Mean [1.000] [0.843] [0.847] [0.910]

Table 6.2: Impact of code compression on execution time
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CHAPTER 7

FUTURE WORK

The research described in this dissertation suggests several aveniuggréowork.

The most obvious of these would explore extensions to optimizations and code compres-
sion transformations.

Especially in the area girofile guided optimizationgery few advances have been
made that have proven to be beneficial enough to be incorporated into a production qual-
ity compiler. We believe that this is mostly due to the already mentioneg€édance
mismatch” between the easily available low level profiling informatson the high
level intermediate representation inside most compilers. This problem doexiabt
in Al t o which should make it an ideal platform for further studies with profile guided
optimizations.

A related issue isesource guided optimizationslany compilers perform optimiza-
tions such as inlining and loop-unrolling without (or very little) regard for thelakke
resources of the underlying machine. This can lead to unexpected and counter-peoductiv
results. For example, excessive inlining can increase the amount of codedkeatuged
frequently (the working set) beyond the size of the instruction cache therebysimgea
cache misses and degrading performance. The same problem arises with loapginroll
An infamous example is the SPEC95 benchnfgolppp which contains loop that has
been manually unrolled. This unrolled loop which accounts for most of the cycles spent
in the benchmark results in a basic block with over 8000 instructions — far éxcethe

instruction cache size. This suggests to leave such potentially harnrsfdrenations
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to an optimizer, likeAl t o, that works on a very low level, where it is easier to estimate
resource usage

There are several interesting enhancements to guarded code specialization:

¢ Instead of specializing for the value with the highest benefit at a certagrgm
point, register) pair. We could specialize for thenost beneficial values, possibly

inserting a sequence of tests to dispatch for the actual value.

e Quite often several registers might have a very skewed value disbribaita pro-
gram point or the conditional distribution of values might be skewed. So instead
of profiling for one register at time, we might want to simultenously profile sgver
registers. This will require a scheme for computing combined benefits when the

contents of several registers are known.

e We have already hinted that our value based profiling/specializion is just elspec
case of the more general predicate based profiling/specializion. The automatic
computation of useful predicates to profile for seems challenging but promising

extension.

Our current implementation of code compression on the object code level does not
cope with scheduling very well. Only prolog/epilog factoring and local factoarey
effective in the presence of rescheduled instruction sequences. It wouldebto rag-
tend basic block factoring so that not just basic blocks which are identical @gister
reallocation but also basic block which are identical up to instructiondadimg can
be factored. This might be a difficult task, since we probably have to compute the de-
pendence graph of the instructions in each basic block and then search for isomorphic
graphs. It would also be nice to extend this to the sub-basic block level alldaing

factoring of parts of basic blocks.
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Instruction Effect

I dg ra, n(rb) load the quadword (8 bytes) at addressrb intora
Idl ra,n(rb) load the longwordd (4 bytes) at address rb into ra
stq ra,n(rb) store the quadword ira at the address+rb

stl ra,n(rb) store the longword ima at the address+rb

I da ra, n(rb) compute the address (valug}-rb intora

and ra, rb,rc | compute the bitwise and o andrb intorc

bis ra,rb,rc | compute the bitwise or afa andrb intorc

xor ra,rb,rc | compute the bitwise xor afa andrb intorc

slr ra,rb,rc | shiftrarb bits to the right intac

sll ra,rb, rc | shiftrarb bits to the left intarc

nmove ra,rb

movera intorb

addqg

ra,

rb,

rc

compute the sum of the quadwords@andrb intorc

addl

ra,

rb,

rc

compute the sum of the longwordsrimandrb into rc

subq

ra,

rb,

rc

compute the difference of the quadwordsamandrb intorc

subl

ra,

rb,

rc

compute the difference of the longwordsranandrb into rc

mul g

, b,

rc

compute the product of the quadwords@andrb intorc
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Instruction Effect

br | abel branch unconditionally to label

jmp (ra) branch unconditionally to the address@
ret ra return to the address na

bsr ra, | abel call the subroutine at label,

storing the return address inta

jsr ra,(rb) call the subroutine at the addresgin

storing the return address inta

beq ra, | abel branch to label ifa=0
bne ra, | abel branch to label ifa # 0
bge ra, | abel branch to label ifa > 0

cnpeq ra,rb,rc | setrctolifra=rb, O otherwise

cnpne ra,rb,rc | setrcto lifra#rb, O otherwise

cnpult ra,rb,rc | setrctolifra<rb, O otherwise

Register| Synonym| Usage

ro vO subroutine result

rl—r25 general purpose

r26 ra return address for subroutine call

r27 pv subroutine address for subroutine call
r28 general purpose

r29 ap pointer into constant pool (global pointer)
r30 sp stack pointer

r31 zero hard wired to zero
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