
On the Complexity of Flow-Sensitive Dataow Analyses

�

Robert Muth Saumya Debray

Department of Computer Siene

University of Arizona

Tuson, AZ 85721, U.S.A.

fmuth, debrayg�s.arizona.edu

Tehnial Report 99-12

Abstrat

This paper attempts to address the question of why ertain dataow analysis problems an be solved

eÆiently, but not others. We fous on ow-sensitive analyses, and give a simple and general result that

shows that analyses that require the use of relational attributes for preision must be PSPACE-hard in

general. We then show that if the language onstruts are slightly strengthened to allow a omputation

to maintain a very limited summary of what happens along an exeution path, inter-proedural analyses

beome EXPTIME-hard. We disuss appliations of our results to a variety of analyses disussed in the

literature. Our work eluidates the reasons behind the omplexity results given by a number of authors,

improves on a number of suh omplexity results, and exposes oneptual ommonalities underlying

suh results that are not readily apparent otherwise.

�

This work was supported in part by the National Siene Foundation under grants CDA-9500991, CCR-9711166, and

ASC-9720738.



1 Introdution

Program analysis involves keeping trak of properties of variables at di�erent program points. In general,

the properties of di�erent variables may depend on eah other. When traking suh properties, we may

hoose to keep trak of dependenies between the properties of di�erent variables (leading to analysis

information of the form \[x = a and y = b℄; or [x =  and y = d℄"), or we may hoose to ignore suh

dependenies (leading to information of the form \[x = a or x = ℄; and [y = b or y = d℄"). Jones

and Muhnik refer to the former kind of analyses as relational attributes analyses, and the latter kind

as independent attributes analyses [6℄. The tradeo� between these methods is that independent attributes

analyses are usually more eÆient but less preise than relational attributes analyses.

When addressing a program analysis problem, it is useful to onsider the omputational omplexity

of obtaining a preise (upto symboli exeution) solution to the problem.

1

If a preise solution an be

obtained \eÆiently," i.e., in polynomial time, it makes sense to try and �nd an algorithm that obtains

suh a solution. If, on the other hand, the existene of eÆient algorithms to ompute preise solutions is

unlikely, it makes sense to sari�e preision for eÆieny. Questions about the omputational omplexity

of various program analyses have been addressed by a number of authors (see Setion 5). The urrent state

of knowledge resulting from these works is, by and large, a set of isolated fats about the omplexities of

various analyses. What is missing are insights into the underlying reasons for these results. For example,

Landi's results on the omplexity of pointer-indued alias analysis [8, 11℄ tell us that single-level pointers

are, in some sense, easy to handle, but multi-level pointers are not: however, they don't explain exatly

why multi-level pointers are hard to deal with. The situation is further muddled by the results of Pande

et al., who show that the preise onstrution of inter-proedural def-use hains beomes diÆult in the

presene of single-level pointers [15℄. In other words, single-level pointers ompliate some analyses but

not others, but we don't have any insights into why suh pointers are benign in some situations but

problemati in others. Moreover, these results are typially obtained using redutions from problems with

known omplexity: di�erent problem hoies by di�erent authors, and di�erenes in the details of the

redutions for di�erent analysis problems, often make it diÆult to see whether there are any underlying

oneptual ommonalities between di�erent suh omplexity arguments.

The main ontribution of this paper is to eluidate the fundamental reasons why ertain program

analyses an be arried out eÆiently (i.e., in polynomial time), while others are diÆult. We give a simple

and general result that is appliable to a wide variety of intra- and inter-proedural ow-sensitive analyses.

This is able to explain, for example, why single-level pointers an be handled eÆiently in the ontext

of pointer-indued alias analysis [8, 11℄ but not for def-use hains [15℄. With very little oneptual and

notational e�ort, a number of omplexity results given in the literature [8, 11, 12, 13, 15℄ fall out diretly

as orollaries of this result. Moreover, for several of these analyses, we are able to improve signi�antly

on the known omplexity results reported in the literature [12, 13, 15℄. For example, we show that the

following analyses are EXPTIME-omplete: inter-proedural pointer alias analysis in the presene of two-

level pointers (Corollary 4.5; previous best result: PSPACE-hard [8℄), inter-proedural reahing de�nitions

in the presene of single-level pointers (Corollary 4.6; previous best result: NP-hard [15℄), and inter-

proedural liveness analysis and available expressions in the presene of referene parameters (Corollary

4.8; previous best result: NP-hard [13℄). In the proess, our work exposes oneptual ommonalities

underlying a variety of program analyses.

2 Preliminaries

From the perspetive of program analysis, we may be interested in two di�erent kinds of information

about program variables. We may want to know something about a partiular variable at a partiular

1

The determination of whether some (nontrivial) property will atually hold at a partiular program point at runtime is, of

ourse, undeidable. A standard assumption in the dataow analysis literature is that all \realizable" paths in a program|by

whih we mean all paths subjet to the onstraint that proedure alls are mathed up orretly with returns|are exeutable,

or, equivalently, that either branh of any onditional an always be exeuted. This assumption, whih Barth referred to as

preision \upto symboli exeution" [2℄, usually suÆes to sidestep the problem of undeidability, and \preision" of program

analyses is typially de�ned with respet to this assumption.

1



program point, e.g., in the ontext of onstant propagation [1℄; or we may want to know something about

the relationships among some set of variables, e.g., whether or not two variables an be guaranteed to

have di�erent values at a partiular program point (useful for reasoning about pointers). We refer to the

problem of determining the former kind of information as the single value problem, and that of determining

the latter kind of information as the simultaneous value problem. For the purposes of this paper, we fous

on rather restrited lasses of suh problems, under the assumption, standard in dataow analysis, that all

paths in the program being analyzed are exeutable:

De�nition 2.1 Suppose we are given a program P and an initial assignmentE

init

of values for the variables

of P . Let x; x

1

; : : : ; x

n

be variables in P , ; 

1

; : : : ; 

n

be values, and let p be a program point in P .

A single value problem for P is a problem of the form: \is there an exeution path from the entry node

of P to p, with initial variable assignment E

init

, suh that \x = " holds when ontrol reahes p?"

A simultaneous value problem for P is a problem of the form: \is there an exeution path from the entry

node of P to p, with initial variable assignment E

init

, suh that \x

1

= 

1

^ x

2

= 

2

^ � � � ^ x

k

= 

k

" holds

when ontrol reahes p?"

In partiular, simultaneous value problems where all of the onstants 

1

; : : : ; 

k

are either 0 or 1 are referred

to as binary simultaneous value problems.

It seems intuitively obvious that solving a simultaneous value problem will require a relational attributes

analysis; we will show, however, that while an independent attributes analysis is often adequate for a single

value problem, there are some situations where it is neessary to resort to relational attributes analyses

even for single value problems.

3 Intra-proedural and Non-reursive Inter-proedural Analyses

3.1 Intra-proedural Analysis

In this setion we onsider a simple language Base where variables are all integer-valued, and a program

onsists of a single proedure ontaining (labelled) statements that an be assignments, onditionals, or

unonditional jumps.

2

Sine our primary interest is in dataow analyses, we make the standard assumption

that all paths in the program are exeutable, i.e., that either branh of a onditional may be exeuted at

runtime, and omit the atual expression being tested in a onditional. To keep the disussion simple and

foused, we restrit our attention to expressions that are variables or onstants (assuming that an analysis

is able to do arithmeti adds an independent soure of omplexity that an obsure the essene of our

results):

Prog ::= Stmt

Stmt ::= Var = Expr;

j if ( - ) Stmt

1

... else if ( - ) Stmt

i

... else Stmt

n

j Label: Stmt

j goto Label;

j fStmt

1

; ...; Stmt

n

;g

Expr ::= Const j Var

Const ::= 0 j 1

The simplest analyses are those where there is no need to keep trak of relationships between variables:

Theorem 3.1 The single value problem for programs in Base an be solved in polynomial time, provided

that primitive operations of the analysis an be arried out in polynomial time.

2

We hoose this syntax for simpliity: with a small amount of ode dupliation, it is straightforward to express our programs

in a subset of C onsisting of assignments, onditionals, and while loops together with break and ontinue statements.

2



Proof: A straightforward independent attribute analysis suÆes in this ase. Jones and Muhnik ([6℄,

Setion 12.2) show that this an be arried out in time quadrati in the size of the program, provided

that primitive operations of the analysis, e.g., heking whether two abstrat domain elements are equal

(whih is neessary to determine when a �xpoint has been reahed), an be arried out in O(1) time. The

requirement of onstant-time operations an be relaxed to allow polynomial-time primitive operations and

still preserve an overall polynomial time omplexity.

We next onsider the omplexity of simultaneous value problems for Base. In this ontext, we mention

the following result: this is not the entral result of this paper, but is of some historial interest beause

its proof, given below. is essentially isomorphi to similar NP-hardness results for ayli programs given

by a number of authors [6, 8, 11, 12, 13, 15℄. Appliations of this theorem inlude (intra-proedural) type

inferene problems where the type of a variable depends on the types of other variables (see, e.g., [6, 16℄).

Theorem 3.5 and Corollary 4.3 give stronger results for more general lasses of programs.

Theorem 3.2 The (binary) simultaneous value problem for ayli programs in Base is NP-omplete.

Proof: The proof of NP-hardness is by redution from the 3-SAT problem, whih is the problem of

determining, given a set of lauses ' eah ontaining three literals, whether ' is satis�able. This problem

is known to be NP-omplete [5℄. Given a formula ' � (u

11

_ � � � _ u

13

) ^ � � � ^ (u

m1

_ � � � _ u

m3

) over a set

of variables fx

1

; : : : ; x

n

g, where eah of the literals u

ij

is either a variable or its negation, we generate a

program P

'

, with variables fx 1t, . . . , x nt, x 1f, . . . , x nf, 1, . . . , mg, of the following form:

if ( - ) f x 1t = 0; x 1f = 1; g else f x 1t = 1; x 1f = 0; g

if ( - ) f x 2t = 0; x 2f = 1; g else f x 2t = 1; x 2f = 0; g

...

if ( - ) f x nt = 0; x nf = 1; g else f x nt = 1; x nf = 0; g

if ( - ) 1 = w

11

;

else if ( - ) 1 = w

12

;

else 1 = w

13

;

...

if ( - ) m = w

m1

;

else if ( - ) m = w

m2

;

else m = w

m3

;

L:

Here, w

ij

are de�ned as follows: if the literal u

ij

is a variable x

k

for some k, then w

ij

= x kt; if the

literal u

ij

is a negated variable x

k

for some k, then w

ij

= x kf. Intuitively, x it = 1 in P

'

represents an

assignment of a truth value true to x

i

in ', while x if = 1 represents a truth value of false. Eah path

through the �rst group of onditionals represents a truth assignment for the variables of '. The seond

group of onditionals represents the evaluation of the lauses: the i

th

lause evaluates to true if and only

if there is a path through the i

th

onditional in the seond group that assigns 1 to the variable i. The

simultaneous value problem we pose at the program point labelled L is

1 = 1 ^ ...^ m = 1.

This is true if and only if there is a path through all of the statements in P

'

that assigns 1 to eah of the

i, i.e., if and only if there is a truth assignment to the variables of ' that auses eah of its lauses to

evaluate to true.

To see that the simultaneous value problem is in NP, given any ayli program in Base we simply

guess a path through the program and hek whether the assignments along this path make the problem

true.

The main result of this setion is for simultaneous value problems for all programs in Base. We show

that this lass of problems is PSPACE-omplete: the idea is that given an arbitary polynomial-spae-

bounded Turing mahine, we an onstrut a simultaneous value problem over a program in Base that an

3



be used to determine whether or not the Turing mahine aepts its input. Suppose we are given a single

tape deterministi polynomial-spae-bounded Turing mahine M = (Q;�;�; Æ; q

0

; F ), where � is the input

alphabet; � = f0; 1; : : : ; nsg is the tape alphabet, with 0 being the blank symbol; Æ 2 Q�� �! Q���fL;Rg

is the transition funtion; q

0

2 Q is the initial state; and F = fq

1

g is the set of �nal states, suh that M

halts on all inputs x after using at most jxj

k

ells of the tape. For simpliity we assume that M erases

its tape before halting and that the tape is yli, i.e., after the last ell the tape \wraps around" to the

�rst ell: these are not serious restritions, and it is not diÆult to see how a Turing mahine that does

not satisfy these assumptions an be transformed into one that does. The use of a yli tape allows us to

simulate the movement of the tape head to the left (respetively, right) by rotating the tape to the right

(respetively, left), so that the tape ell being sanned by the head is always ell 0: this simpli�es the

simulation of the Turing mahine, sine we don't have to keep trak of the position of the tape head. We

onstrut a program P

M;x

that emulates M on an input x. This program ontains three sets of (boolean)

variables:

1. Q

0

; : : : ; Q

nq

, where nq = jQj � 1: These variables represent the urrent state of M : intuitively, Q

i

= 1

denotes that M is in state i.

2. T

0;0

; : : : ; T

nt;ns

, where nt = jxj

k

� 1; ns = j�j� 1: These variables represent the ontents of M 's tape:

intuitively, T

i;j

= 1 denotes that ell i of M 's tape ontains symbol j.

3. X

0

; : : : ; X

ns

: these variables are temporaries for opying the tape ontents while we \rotate" the tape.

A on�guration where M is in state q

k

, the tape ontents are s

0

s

1

: : : s

nt

, and where M 's tape head is

sanning the m

th

tape square, is desribed by the following variable settings:

Q

i

=

�

1 if i = k

0 otherwise

; X

i

= 0; for all i; T

i;j

=

�

1 if s

(i�m) mod (nt+1)

= j

0 otherwise

The ode orresponding to M 's move when it is state q

i

and sanning a ell ontaining a symbol s

j

, i.e.,

Æ(q

i

; s

j

), is represented by MOV

i;j

, and is de�ned as follows:

Æ(q

i

; s

j

) = (q

k

; s

m

; L) Æ(q

i

; s

j

) = (q

k

; s

m

;R)

Q

i

= Q

k

; Q

i

= Q

k

;

Q

k

= 1; Q

k

= 1;

T

0;j

= T

0;m

; T

0;j

= T

0;m

;

T

0;m

= 1; T

0;m

= 1;

goto opy left; goto opy right;

The �rst two lines of this ode update the state variable, the next two lines update the ontents of the tape

ell being sanned, and the last line orresponds to the rotation of the tape, simulating the movement of

the tape head.

The program P

M;x

that emulates M on input x is shown in Figure 1. After initializing the T

i;j

variables appropriately for the input x, the program goes into a loop, repeatedly guessing the urrent state

and the symbol under the tape head, then updating the state and tape ell, and �nally rotating the tape

appropriately in order to simulate the movement of the tape head. A wrong guess leads to a state where

multiple Q

i

variables, or multiple T

i;j

variables, are set to 1. One suh an \illegal" state is entered, the

struture of the program ensures that the number of variables set to 1 does not derease, whih means

that subsequent states remain illegal. This allows us to use a simultaneous value problem to identify legal

states in P

M;x

, i.e., those that orrespond to valid on�gurations of M , and thene to determine whether

M aepts its input. For notational onveniene, we introdue the following abbreviations:

4



/* Program P

M;x

to emulate a given polynomial spae-bounded Turing Mahine M

on input x */

/* int Q

0

, ..., Q

nq

;

int T

0;0

, ..., T

nt;ns

;

int X

0

, ..., X

ns

; */

f

T

0;0

= � � �; ...; T

nt;ns

= � � �; /* initialize T

i;j

based on input string x */

Q

0

= 1; Q

1

= 0; ...Q

nq

= 0; /* initial state */

Start: /* emulation loop */

X

0

= 0; ...; X

ns

= 0; /* lear temps */

Dispath: /* transitions based on urrent state and tape symbol */

if ( - )

f /* Q

0

== 1? */

if ( - ) f /* T

0;0

== 1? */ MOV

0;0

; g

...

else if ( - ) f /* T

0;i

== 1? */ MOV

0;i

; g

...

else if ( - ) f /* T

0;ns

== 1? */ MOV

0;ns

; g

g

else if ( - ) goto Done; /* Q

1

== 1? : q

1

= final state */

else if ( - )

f /* Q

2

== 1? */

...

g

...

else if ( - )

f /* Q

nq

== 1? */

if ( - ) f /* T

0;0

== 1? */ MOV

nq;0

; g

...

else if ( - ) f /* T

0;i

== 1? */ MOV

nq;i

; g

...

else if ( - ) f /* T

0;ns

== 1? */ MOV

nq;ns

; g

g

/* opy tape left or right */

opy right:

X

0

= T

0;0

; ...; X

ns

= T

0;ns

;

T

0;0

= T

1;0

; ...; T

0;ns

= T

1;ns

;

...

T

nt;0

= X

0

; ...; T

nt;ns

= X

ns

;

goto Start;

opy left:

X

0

= T

nt;0

; ...; X

ns

= T

nt;ns

;

T

nt;0

= T

nt�1;0

; ...; T

nt;ns

= T

nt�1;ns

;

...

T

0;0

= X

0

; ...; T

0;ns

= X

ns

;

goto Start;

Done:

X

0

= 0; ...X

ns

= 0;

End:

g

Figure 1: The program P

M;x

to emulate Turing mahine M on input x

5



UnambiguousFinalState � (Q

0

= 0 ^ Q

1

= 1 ^ Q

2

= 0 ^ � � � Q

nq

= 0)

TempsClear � (X

0

= 0 ^ � � � X

ns

= 0)

TapeClear � ((T

0;0

= 1 ^ � � � ^ T

nt;0

= 1)^

(T

0;1

= 0 ^ � � � ^ T

nt;1

= 0) ^ � � � ^

(T

0;ns

= 0 ^ � � � ^ T

nt;ns

= 0)).

Intuitively, UnambiguousFinalState is true if and only if the only state variable that is 1 is Q

1

, orresponding

to the �nal state of M ; TempsClear is true if and only if the variables X

i

are all 0; and TapeClear is true if

and only if the ontents of the variables T

i;j

orrespond to all the tape ells of M ontaining a blank.

Lemma 3.3 A given polynomial-spae-bounded Turing mahine M aepts its input x if and only if A-

eptingCon�g may hold at the end of the program, where

AeptingCon�g � UnambiguousFinalState ^ TempsClear ^ TapeClear .

Proof: (sketh) Let a on�guration � of M orrespond to a state b� of P

M;x

, written � � b�, if and only

if the following holds: in �, M is in state q

k

, sanning tape ell m, with tape ontents s

0

s

1

: : : s

nt

; and in

b�, P

M;x

has the following values for its variables, with ontrol at the point labelled Dispath:

Q

i

=

�

1 if i = k

0 otherwise

; X

i

= 0; for all i; T

i;j

=

�

1 if s

(i�m) mod (nt+1)

= j

0 otherwise

We use the following notation: if M an go from on�guration � to on�guration � via a sequene of

transitions, we write � `

�

M

�; if there is a path in the program P

M;x

that transforms a state u to a state

v, with ontrol being at the point labelled Dispath in eah ase, we write u `

�

P

v.

We �rst show that if, given on�gurations � and � for M and states b� and

b

� for P

M;x

suh that � � b�

and � �

b

�, if � `

�

M

� then b� `

�

P

b

�. Pitorially:

βα

∼
βα

∗

∗
M

P

∼

The proof is by indution on the length n of the transition sequene of M . The base ase, for n = 0,

is trivial. For the indutive ase, suppose that the laim holds for transition sequenes of length n, and

onsider on�gurations �, � and  of M and states b� and b of P

M;x

, with � � b� and  � b, suh that

� `

n

M

 `

M

�. From the indution hypothesis, we have b� `

�

P

b. Suppose that in the transition  `

M

�

M goes from state q

a

, sanning tape symbol , to state q

b

. In P

M;x

, onsider state resulting from b by

taking the path from the point labelled Dispath to that referred to as MOV

a;

. An examination of the

de�nition of the ode orresponding to MOV

i;j

shows that the resulting state

b

� of P

M;x

orresponds to

the on�guration � of M after the n+ 1

st

transition. The laim follows.

Sine, from the de�nition of P

M;x

, the initial on�guration of M orresponds to the state of P

M;x

when

ontrol �rst reahes Dispath, it follows from this that if M aepts its input and halts|i.e., reahes a

on�guration with state q

1

and its tape erased (reall that q

1

is the �nal state of M , and we assumed

that M would erase its tape prior to halting)|then there is a path in P

M;x

that leads to a orresponding

state, whih is desribed by AeptingCon�g. This means that AeptingCon�g holds at the point End.

Conversely, if there is a path through P

M;x

suh that AeptingCon�g holds at its end at the point labelled

End, then we an use the sequene of MOV

i;j

ode exeuted along this path to reonstrut a sequene of

6



moves of M leading to aeptane. This establishes that M aepts its input if and only if there is a path

in P

M;x

, onsisting of \good" guesses, at the end of whih AeptingCon�g holds at the point End.

Next, onsider any path in P

M;x

that does not orrespond to a valid omputation of M . This must

ome from a \bad guess" in P

M;x

of either the state (variables Q

i

) or the tape symbol (variables T

j;k

),

resulting in the exeution of a ode fragment MOV

i;k

. It an be seen, from the de�nition of MOV

i;k

, that

the variable setting that results when ontrol next returns to the point Dispath has more than one the

variables Q

i

set to 1, or more than one of the variables T

i;j

set to 1. Suh a variable setting is alled illegal

beause it does not represent any valid on�guration. Furthermore, one we obtain an illegal variable

setting we annot turn this bak into a legal one beause eah of the MOV

i;j

ode segments preserves or

inreases the number variables set to 1. This means that AeptingCon�g will not hold at the end of suh

a path in P

M;x

.

Together, it follows from these that AeptingCon�g will hold at the point labelled End if and only if

M aepts x.

Lemma 3.4 Given a polynomial-spae-bounded Turing mahine M and input x, the program P

M;x

illus-

trated in Figure 1 an be generated in spae O(log(jM j+ jxj)).

Proof: Suppose we are given a Turing mahine M that, on any input of length n, is p(n)-spae-bounded

for some polynomial p(n). The ode for the orresponding program P

M;x

an be divided into three distint,

and independent, omponents: the initialization ode; the ode for the emulation loop, onsisting of the

ode to lear the variables X

i

followed by the ode for the transitions of M ; and the ode for \rotating" the

tape, labelled opy right and opy left, and the \leanup" omputation at the label Done. The spae

requirements for eah of these omponents is as follows:

{ The initialization step onsists of j�j � p(jxj) assignments, where eah assignment statement is of

�xed size. To generate this ode we need a ounter of size log(j�j � p(jxj)) = log j�j + log p(jxj)

bits. Sine j�j = O(jM j) and log p(n) = O(log n) for any polynomial p(n), this omponent requires

O(log jM j+ log jxj) spae.

{ For the emulation loop, learing the temporary variables requires log j�j = O(1) bits. The outer if

statement in the emulation loop onsists of jQj ases, where eah ase (with the exeption of that for

Q

1

= 1) onsists of an inner if statement with O(j�j) ases, eah of whih onsists of a �xed amount of

ode. Thus the spae requirement for generating this is log(jQj�j�j) = log jQj+log j�j = O(log jM j).

Thus, the total spae required for this omponent is O(log jM j).

{ Eah of the opy right and opy left portions of the program onsists of j�j + j�j � p(jxj) =

O(j�j � p(jxj)) assignments, where eah assignment statement is of �xed size. The leanup ode

at the label Done onsists of j�j � p(jxj) assignments, where eah assignment statement is of �xed

size. To generate these assignments we need a ounter of size log(j�j � p(jxj)) = log j�j + log p(jxj)

bits. Sine j�j = O(jM j) and log p(n) = O(log n) for any polynomial p(n), this omponent requires

O(log jM j+ log jxj) spae.

The total spae required is therefore O(log jxj + log jM j). Sine log jxj � log(jM j + jxj) and log jM j �

log(jM j+ jxj), we have O(log jxj+ log jM j) = O(log(jM j+ jxj)). The lemma follows.

Theorem 3.5 The (binary) simultaneous value problem for programs in Base is PSPACE-omplete.

Proof: (sketh) PSPACE-hardness follows diretly from Lemmas 3.3 and 3.4.

To show that the simultaneous value problem is in PSPACE, we show that a given suh a problem for

a program P , we an onstrut a nondeterministi multi-tape polynomial-spae-bounded Turing mahine

7



M

P

to solve the problem. Given a program P , the input to M

P

onsists of the ontrol ow graph G

P

of P , an initial assignment E

init

of values for the variables of P , a target program point n

t

, and a target

environment E

t

for the variables of P : E

t

= fx

0

7! 

0

; x

1

7! 

1

; : : : ; x

n

7! 

n

g spei�es the simultaneous

value problem x

0

= 

0

^x

1

= 

1

^ : : :^x

n

= 

n

. We wantM to halt i� there is a path from the initial node

of G

P

to n

t

that transforms E

init

to the target environment E

t

. M

P

opies G

P

and E

t

to two work tapes

and maintains another work tape T

env

that ontains a list of (variable, value) pairs, one for eah program

variable. T

env

is initialized from the initial assignment E

init

. M

P

then starts simulating the exeution of

P by traversing G

P

At eah vertex of the ontrol ow graph, it simulates the e�ets of assignments and

updates T

env

appropriately. At branh nodes M

P

nondeterministially hooses a suessor to ontinue

proessing. Whenever M

P

reahes the target node n

t

it heks whether the variable values on T

env

math

the desired environment E

t

, and halts if this is the ase. It is lear that if there is an exeution path in

P suh that, starting from the initial variable assignment E

init

, exeution an reah the point n

t

with the

desired values E

t

for the variables, then M an guess this path and will eventually halt and aept its

input. Conversely, if M

P

halts and aepts, there must have been suh a path.

The spae needs for M

P

are bounded by the spae required to store the G

P

and E

init

and the spae

required for the tape T

env

. The spae required for G

P

and E

init

is O(n), where n is the size of the input

program. Under the assumption that the we have a �xed number of onstants to deal with (i.e., that the

analysis is being arried out over a �xed �nite domain), we need O(1) bits for the value of a variable at

any program point; there an be at most O(n) variables in P , so the spae requirements for T

env

are O(n).

It follows that M is polynomial-spae-bounded.

In the ontext of program analysis, this is representative of the simplest kind of simultaneous value

problem, where we have two distint properties (here represented by \equal to 0" and \equal to 1") of a

language with a minimally interesting set of ontrol onstruts. The (hardness) result therefore extends

diretly to more omplex analysis problems. Unlike the PSPACE-hardness result given by Jones and

Muhnik for relational attributes analyses [6℄, our result does not require interpreted onditionals. In

other words, our result omplies with the standard assumption of dataow analysis, namely, that all paths

in a program are exeutable. As suh, it is appliable to a wider variety of dataow analyses.

3.2 Inter-proedural Analysis of Non-reursive Programs

Suppose we extend the language Base with proedures where parameters are passed by value: let the

resulting language be Base+Pro. For non-reursive programs in this language, the omplexity of simul-

taneous value problems does not hange:

Theorem 3.6 Inter-proedural simultaneous values problems for non-reursive programs in Base+Pro

is PSPACE-omplete.

Proof: PSPACE-hardness follows from Theorem 3.5. To see that the problem remains in PSPACE,

onsider a non-reursive program ontaining k proedures. The runtime all stak of this program an

have depth at most k. We use a nondeterministi Turing mahine similar to that used to show membership

in PSPACE in the proof of Theorem 3.5, exept that it uses a tape that is k times longer than before. This

tape is used as a stak: at a proedure all, it \pushes" a frame by opying the values of the arguments

after the \urrent frame" at the end of the tape; and on a return from a proedure, it \pops" the urrent

frame by erasing the appropriate tape ells and moves to the next frame. The spae requirement of this

mahine is still polynomial in the length of the input, whene it follows that the analysis is in PSPACE.

3.3 Appliations to the Complexity of Dataow Analyses

This setion disusses appliations of the results of the previous setion to various program analyses dis-

ussed in the literature.

8



3.3.1 Intra-proedural Pointer Alias Analysis

We �rst add single-level pointers to the Base language, yielding the language Base+1ptr. This language

ontains two lasses of variables: base variables, whih range over integers, and pointers to base variables,

whih range over addresses (whih are assumed to be disjoint from the set of integers). The new operations

in this language, ompared to Base, are: taking the address of a (base) variable v, denoted by &v, and

dereferening a pointer p, denoted by *p.

It is not hard to see that the simultaneous value problem in this ase is still in PSPACE, sine we an

onstrut a polynomial-spae-bounded Turing mahine to solve this problem in a manner similar to that

in the proof of Theorem 3.5. By ontrast to the language Base, where the single value problem is in P, the

omplexity of the single value problem for Base+1ptr depends on whether we are onerned with base

variables or pointers. For a single-value problem for a base variable, an independent attribute analysis is

not suÆient. This is illustrated by the following program fragment:

a = 0;

if ( - ) { p = &a; x = 0; } else { p = &b; x = 1; }

*p = x;

Suppose we are interested in the single-value problem of whether a = 1 may hold immediately after the

assignment *p = x. An independent attributes analysis would infer that immediately after the onditional,

p an point to either a or b, and therefore that after the assignment `*p = x' the value of a may or may not

be 1. A relational attributes analysis, on the other hand, would be able to infer that the value of a annot

be 1 after the indiret assignment. In other words, for a preise analysis we need relational attributes, i.e.,

the ability to solve simultaneous value problems.

Theorem 3.7 The single-value problem for pointer variables in Base+1ptr an be solved in polynomial

time. The single-value problem for base variables in Base+1ptr is PSPACE-omplete.

Proof: For a single-value problem for a pointer variable, the analysis need onern itself only with assign-

ments to pointer variables, and a straightforward independent attributes analysis is suÆient. Reasoning

as for Theorem 3.1 shows that this is solvable in polynomial time.

To prove PSPACE-hardness, we show how a binary simultaneous value problem in Base an be redued

to a single-value problem for base variables in Base+1ptr . Given a program P in Base the idea is to

generate a program P

0

as follows (here, X

1

; X

2

; : : : denote variables in P while X

1

; X

2

; : : : denote variables

in P

0

). The program P

0

ontains two variables, Zero and One, that are initialized to the onstants 0 and

1 respetively. For eah variable X in P we have two variables X and X in P

0

. Assignments in P are

translated into P

0

as follows:

{ An assignment `X = 0' in P is translated to a pair of assignments `X = &Zero; X = &One' in P

0

;

an assignment `X = 1' is translated to `X = &One; X = &Zero.'

{ An assignment `X = Y in P is translated to a pair of assignments `X = Y; X = Y.'

The intuition is that X tells us what the value of the original variable X is, while X tells us what it is not.

Other onstruts, suh as onditionals and ontrol transfers, remain unhanged in the translation.

Suppose we are given a binary simultaneous value problem in of the form X

1

= 

1

^ � � � ^X

n

= 

n

at a

point p in the original program P , where 

i

2 f0; 1g. Consider the onjunt X

1

= 

1

: if 

1

� 0 then, in the

generated program program, we want to test whether X

1

points to Zero. If 

1

� 1, we want to test whether

X

1

points to One; or equivalently, whether X

1

does not point to Zero (sine the variables One and Zero are

the only base variables in the program, and hene the only things that X

1

ould point to); or equivalently,

whether X

1

points to Zero. Let p

0

be the program point in P

0

that orresponds to the point p in P , and

9



let u; v denote that u points to v. We want to determine whether there is an exeution path in P

0

upto

p

0

suh that x

1

; Zero^ � � � ^x

n

; Zero, where x

i

is X

i

if 

i

� 0, and X

i

if 

i

� 1. We do this by inserting

the following ode fragment at the point p

0

(where x

i

is either X

i

or X

i

, depending on whether 

i

is 0 or

not, as just desribed).

if ( - ) f

*x

1

= 0; ...; *x

n

= 0;

L: goto End; /* go to end of program and halt */

g

If, for some exeution path leading to p

0

in the program P

0

, x

i

; Zero for eah x

i

, then all of the

assignments *x

i

= 0 will write to the variable Zero. This means that the initial assignment of 1 to the

variable One will not be overwritten (sine there are no other assignments to either Zero or One, or any

indiret assignments through any of the variables X

i

or X

i

, elsewhere in the program), so One will have

the value 1 at the point labelled L in the ode fragment above. On the other hand, if for every exeution

path leading to p

0

we have x

j

6; Zero for some j, it must be the ase that x

j

; One, whih means that

the assignment *x

j

= 0 will overwrite the initial assignment to One. Thus, by answering the single-value

problem of whether or not One has the value 1 at the point L, we an solve the original binary simultaneous

value problem for the program P . The result follows from Theorem 3.7.

As an example appliation of this, the following result is immediate:

Corollary 3.8 Preise intra-proedural onstant propagation in Base+1ptr is PSPACE-omplete.

Next, we onsider multi-level pointers. The simplest ase involving multi-level pointers is when we have

two-level pointers, i.e., pointers to pointers. In this ase we have three lasses of variables: base variables;

pointers to base variables, or 1-pointers; and pointers to 1-pointers (i.e., pointers to pointers to base

variables), or 2-pointers. We all this language Base+2ptr.

The role of 2-pointers with respet to 1-pointers in the language Base+2ptr is exatly analogous to

that of pointers to base variables in the language Base+1ptr. In partiular, to determine the possible

aliases of 1-pointers, we need to determine the values that an be assigned to them through 2-pointers. By

diret analogy with Theorem 3.7, therefore, we have the following result:

Theorem 3.9 The single-value problem for 2-pointers in Base+2ptr is solvable in polynomial time. The

single-value problem for 1-pointers in Base+2ptr is PSPACE-omplete.

Landi's dissertation shows that intra-proedural pointer alias analysis is PSPACE-omplete if at least four

levels of indiretion are permitted [8℄; his proof an be adapted to require only two levels of indiretion

[10℄. Landi's onlusion is that the diÆulty with pointer alias analysis is aused by multiple levels of

indiretion. This is obviously a valid onlusion, but does not get to the heart of the matter: what is the

fundamental di�erene between single-level and multi-level pointers that auses the analysis of multi-level

pointers to beome so diÆult? The answer, as we have shown above, is that alias analysis in the presene

of at most one level of indiretion an be arried out using an independent attributes analysis, while the

presene of even two levels of indiretion requires a relational attributes analysis.

A similar line of reasoning an be used to derive a reent result by Chatterjee et al. [4℄, namely, that

intra-proedural onrete type inferene for Java programs with single-level types and exeptions without

subtyping, and without dynami dispath, is PSPACE-hard.

3.3.2 Intra-proedural Reahing De�nitions with Single-Level Pointers

Consider the problem of omputing intra-proedural reahing de�nitions in the language Base+1ptr, i.e.,

in the presene of single-level pointers. The following example illustrates that an independent attributes

10



analysis is not enough for a preise solution to this problem, and that a relational attributes analysis is

neessary:

int a, b, *p, *q;

...

D: a = 0;

if ( - ) { p = &a; q = &b; } else { q = &a; p = &b; }

*p = 1;

*q = 1;

L:

We want to know whether the de�nition labelled D an reah the program point labelled L. An indepen-

dent attributes analysis would infer that p an point to either a or b after the onditional, and therefore

that the assignment *p = 1 might not kill the de�nition D. A similar reasoning would apply to q and the

indiret assignment *q = 1. Suh an analysis would therefore onlude that de�nition D ould reah L. A

relational attributes analysis, by ontrast, would determine that one of p or q would point to a, so that

one of the assignments *p = 1 or *q = 1 would de�nitely kill the de�nition D|i.e., de�nition D does not

reah L. Thus, the independent attributes analysis is not preise, and a relational attributes analysis is

neessary. The following theorem disusses the omplexity of preise analyses; its proof uses a redution

very similar to that for Theorem 3.7.

Theorem 3.10 The determination of preise solutions for the following intra-proedural analysis problems

for base variables in programs in Base+1ptr is PSPACE-omplete: (a) reahing de�nitions; (b) live

variables; and () available expressions.

Proof: The proof of PSPACE-hardness uses a translation from the simultaneous value problem in Base

that is idential to that used in the proof of Theorem 3.7. Let p

0

be the program point in P

0

that orresponds

to the point p in P , and let u; v denote that u points to v. We inser the following ode fragment at the

point p

0

(where x

i

is either X

i

or X

i

, depending on whether 

i

is 0 or not, as in the proof of Theorem 3.7).

if ( - ) f

*x

1

= 0; ...; *x

n

= 0;

L: goto End; /* go to end of program and halt */

g

If, for some exeution path leading to p

0

in the program P

0

, x

i

; Zero for eah x

i

, then all of the

assignments *x

i

= 0 will write to the variable Zero, whih means that the initial assignment of 1 to the

variable One will reah the point labelled L in the ode fragment above (sine there are no other assignments

to either Zero or One, or any indiret assignments through any of the variables X

i

or X

i

, elsewhere in the

program). On the other hand, if for every exeution path leading to p

0

we have x

j

6; Zero for some j, it

must be the ase that x

j

; One, whih means that the assignment *x

j

= 0 will kill the initial assignment

to One. Thus, by answering the question of whether the initial assignment to the variable One an reah

the point labelled L in the program P

0

, we an solve the original binary simultaneous value problem for

the program P . The result follows from Theorem 3.7.

Similar arguments an be used to establish PSPACE-ompleteness for liveness analysis and available

expressions.

Theorem 3.10 improves on a result due to Pande, Landi and Ryder, who show that the problem of

omputing inter-proedural def-use hains in the presene of single-level pointers is NP-hard [15℄.

4 Inter-proedural Analysis of Reursive Programs

To study the omplexity of inter-proedural analyses in the presene of reursion, we add a very limited

enhanement to the ontrol ow onstruts of the language Base+Pro (i.e., the base language together

11



with proedures). Eah program now has a distinguished global variable NoErr whose value is initially 1.

We add a statement Error-if-Zero(�) that behaves as follows: when Error-if-Zero(x) is exeuted, NoErr

is set to 0 if x has the value 0, otherwise it is not modi�ed. In a general programming ontext, suh a

onstrut ould be used to determine, for example, whether system alls suh as mallo() have exeuted

without errors during exeution; in the ontext of this paper we use it in a muh more limited way, though

with a very similar overall goal, namely, to determine whether anything \goes wrong" in an exeution path.

We refer to the language obtained by adding this faility to Base+Pro as Base+Pro+Err.

We show that the single-value problem for arbitrary programs in Base+Pro+Err is omplete for

deterministi exponential time. Our proof relies on a result of Chandra et al. [3℄, who show that APSPACE

= EXPTIME, where APSPACE is the lass of languages aepted by polynomial-spae-bounded alternating

Turing mahines, and EXPTIME = [

�0

DTIME[2

n



℄.

De�nition 4.1 An (single-tape) alternating Turing mahine M is a 6-tuple (Q;�;�; Æ; q

0

; �), where Q is

a �nite set of states; � is the input alphabet; � is the tape alphabet; Æ : Q��! P(Q� ��fL;Rg) is the

transition funtion; q

0

2 Q is the initial state; and � : Q ! faept; rejet;8; 9g is a labelling funtion on

states.

3

To simplify the disussion that follows, we additionally assume that a state q that is existential (i.e.,

�(q) = 9) or universal (i.e., �(q) = 8) has exatly two suessor states for any given tape symbol; it is not

hard to see how any ATM an be transformed to satisfy this restrition: if a state q has a single suessor

for some tape symbol we add a seond suessor that is either an aepting state if q is universal, or a

rejeting state if q is existential; if q has more than 2 suessors for some tape symbol, we use a \binary

tree of transitions" instead. As before, we assume that the tape \wraps around," so that the ell being

sanned is always ell 0. Thus, a on�guration of an ATM is of the form qx where q is a state and x the

tape ontents.

The notion of aeptane for alternating Turing mahines is a generalization of that for ordinary non-

deterministi Turing mahines: the main di�erene is that eah suessor of a universal state is required to

lead to aeptane. To de�ne this more formally, we use the notion of omputation trees due to Ladner et

al. [7℄. A omputation tree for an ATM M is a �nite, nonempty labelled tree with the following properties:

eah node of the tree is labelled with a on�guration of M ; if p is an internal node of a tree with label

qu and q is an existential state, then p has exatly one hild labelled q

0

u

0

suh that qu ` q

0

u

0

; and if p

is an internal node of a tree with label qu and q is a universal state with suessors q

0

and q

00

, suh that

qu ` q

0

u

0

and qu ` q

00

u

00

, then p has two hildren labelled q

0

u

0

and q

00

u

00

. An aepting omputation tree is

one where all the leaf nodes are aepting on�gurations, i.e., of the form qu where q is an aepting state.

An ATM M with start state q

0

aepts an input x if it has an aepting omputation tree whose root is

labelled q

0

x.

Let M be a p(n)-spae-bounded ATM with tape alphabet �, where p(n) is some polynomial, and let

x be an input for M . Let nt = p(jxj) � 1 and ns = j�j � 1. The program P

M;x

in Base+Pro+Err

that simulates the behavior of M on input x behaves as skethed below. There is a funtion f

q

() for

eah state q of M . Eah suh funtion has a tuple of parameters T

0;0

, . . . , T

nt;ns

that represents the

ontents of M 's tape in a way that is oneptually similar to the onstrution desribed in Setion 3.1,

the main di�erene being that these variable are now loals rather than globals. State transitions in M

are simulated by funtion alls in P

M;x

: moves to the suessors of an existential state are simulated using

an if-then onstrut, while moves to the suessors of a universal state are simulated by a sequene of

funtion alls.

Let M = (Q;�;�; Æ; q

0

; �) be a p(n)-spae-bounded ATM, where p(n) is some polynomial, and let x be

an input for M . Let nt = p(jxj)� 1 and ns = j�j � 1. We generate a program P

M;x

in Base+Pro+Err

3

There is a more general formulation of alternating Turing mahines where states an also be labelled as \negating" states,

whih are labelled by :. However, this adds nothing to their power (Theorem 2.5 of Chandra et al. [3℄), so for simpliity we

restrit ourselves to alternating Turing mahines without negating states.

12



as disussed below. The ode neessary to simulate M 's ations when it makes a transition from state q

i

to state q

k

upon sanning a tape ell ontaining symbol s

j

is represented by TRANSITION(q

i

; s

j

; q

k

) and

is de�ned as follows:

Æ(q

i

; s

j

) = (q

k

; s

m

; L) Æ(q

i

; s

j

) = (q

k

; s

m

;R) Explanation

T

0;0

= X

0;0

; T

0;0

= X

0;0

; restore tape

... ...

T

nt;ns

= X

nt;ns

; T

nt;ns

= X

nt;ns

; restore tape

Error-if-Zero(T

0;j

) ; Error-if-Zero(T

0;j

) ; verify sanned symbol

T

0;j

= 0; T

0;j

= 0; update tape

T

0;m

= 1; T

0;m

= 1; update tape

COPY LEFT; COPY RIGHT; rotate tape

f

q

k

(T

0;0

; : : : ; T

nt;ns

); f

q

k

(T

0;0

; : : : ; T

nt;ns

); move to state q

k

Here, COPY LEFT and COPY RIGHT orrespond to the ode fragments labelled opy left and

opy right respetively in Figure 1, their purpose being to rotate the tape appropriately to simulate

the movement of the tape head.

Corresponding to eah state q 2 Q there is a funtion f

q

in P

M;x

that is de�ned as follows:

1. q

i

is an aepting state. The funtion f

q

i

is de�ned as

f

q

i

( T

0;0

, ..., T

nt;ns

) f /* do nothing */ g

2. q

i

is a rejeting state. The funtion f

q

i

is de�ned as

f

q

i

( T

0;0

, ..., T

nt;ns

) f Error-if-Zero(0) ; g

3. q

i

is a universal state. Let the suessors of q

i

on tape symbol s

j

be q

j

0

and q

j

00

(reall our assumption

that q

i

has exatly two suessors on any given tape symbol). The funtion f

q

i

is de�ned as

f

q

i

( T

0;0

, ..., T

nt;ns

)

f

loal X

0;0

= T

0;0

, ..., X

nt;ns

= T

nt;ns

;

if ( - ) f TRANSITION(q

i

; s

j

; q

0

j

); TRANSITION(q

i

; s

j

; q

00

j

); g /* moves on s

j

*/

...

else f TRANSITION(q

i

; s

k

; q

0

k

); TRANSITION(q

i

; s

k

; q

00

k

); g /* moves on s

k

*/

g

4. q

i

is an existential state. Let the suessors of q

i

on tape symbol s

j

be q

j

0

and q

j

00

. The funtion f

q

i

is de�ned as

f

q

i

( T

0;0

, ..., T

nt;ns

)

f

loal X

0;0

= T

0;0

, ..., X

nt;ns

= T

nt;ns

;

if ( - ) f /* moves on s

j

*/

if ( - ) f TRANSITION(q

i

; s

j

; s

0

j

) g; else f TRANSITION(q

i

; s

j

; q

00

j

) g;

g

...

else if ( - ) f /* moves on s

k

*/

if ( - ) f TRANSITION(q

i

; s

k

; q

0

k

) g; else f TRANSITION(q

i

; s

k

; q

00

k

) g;

g

g

The entry point of the program P

M;x

is the funtion main(), de�ned as

13



main()

f

Start:

loal T

0;0

, ..., T

nt;ns

;

INIT TAPE; /* initialize T

i;j

based on M's input x */

f

q

0

(T

0;0

; : : : ; T

nt;ns

);

End:

g

The ruial point in the onstrution is that the Error-if-Zero(�) onstrut is used to keep trak

of whether anything \goes wrong" along an exeution path: it sets the global variable NoErr, whih is

initialized to 1 when exeution starts, to 0 along an exeution path if either (i) the exeution path does

not orrespond to a omputation of M , beause P

M;x

guesses inorretly on the tape ell being sanned by

M ; or (ii) beause the path enounters a rejeting state of M . One NoErr has been set to 0 the struture

of the program ensures that it annot be reset to 1. Thus, at the end of the exeution path, the value of

NoErr an be used to determine whether that path orresponds to a valid aepting omputation of M .

The dynami analog of the all (multi-)graph of P

M;x

is the valid all tree, whih is a �nite tree where

eah vertex is labelled with a proedure name and a tuple of arguments. A vertex (f; �u) in suh a tree

has hildren (f

1

; �u

1

); : : : ; (f

k

; �u

k

) if there is an exeution path in P

M;x

, starting with the all f(�u) with the

value of NoErr = 1, that exeutes the proedure alls f

1

(�u

1

); : : : ; f

k

(�u

k

) in f 's body and returns with the

value of NoErr still at 1 (the onditions on the value of NoErr ensure that nothing has gone wrong along

the orresponding exeution path). The following results establish the onnetion between the behaviors

of the alternating Turing mahine M and the program P

M;x

. Here, T

i;j

� u denotes that the values of the

tuple of variables (T

0;0

; : : : ; T

nt;ns

) in P

M;x

orretly reet the tape ontents u in M .

Theorem 4.1 P

M;x

has a valid all tree with root (f

q

; T

i;j

) if and only if M has an aepting omputation

tree with root qu, where T

i;j

� u.

Proof: We �rst show that P

M;x

has a valid all tree T

P

with root (f

q

; T

i;j

) if M has an aepting

omputation tree T

M

with root qu, where T

i;j

� u. We proeed by indution on the height of T

M

.

The base ase is for n = 0, whih means that q is an aepting state. Suppose that the root of T

M

is

labelled qu. From the onstrution of P

M;x

, it follows that the tree onsisting of the single node (f

q

; T

i;j

),

where T

i;j

� u, is a valid all tree.

For the indutive ase, assume that P

M;x

has a valid all tree with root (f

q

0

; �v

0

) whenever M has

an aepting omputation tree with root q

0

u

0

and height � k, where �v

0

� u

0

, and onsider an aepting

omputation tree T

M

of M with height k + 1. Let the root of T

M

be qu, and suppose that T

i;j

� u. We

have two possibilities:

1. q is an existential state. From the de�nition of omputation trees, T

M

's root has a single hild q

0

u

0

,

and the subtree T

0

M

rooted at this hild is also an aepting omputation tree of M . Sine T

0

M

has

height less than k + 1, it follows from the indution hypothesis that P

M;x

has a valid all tree T

0

P

whose root is labelled (f

q

0

; �v

0

) suh that �v

0

� u

0

.

Suppose that the transition from q to q

0

ours on tape symbol s

i

. From the onstrution of P

M;x

,

the funtion f

q

ontains an exeution path through the ode de�ned by TRANSITION(q; s

i

; q

0

) that

veri�es that the tape symbol sanned is s

i

, adjusts the variables T

i;j

as neessary to orrespond to

the tape ontents u

0

, and alls f

q

0

. It follows from this that a tree with root (f

q

; T

i;j

) that has a

single subtree T

0

P

is a valid all tree for P

M;x

.

2. q is a universal state. This means that T

M

's root has two hildren q

0

u

0

and q

00

u

00

, and that the

subtrees T

0

M

and T

00

M

rooted at eah of these hildren are aepting omputation trees for M . Sine

14



eah of these subtrees has height less than k + 1, it follows from the indution hypothesis that P

M;x

has valid all trees T

0

P

, with root labelled (f

q

0

; �v

0

), and T

00

P

, with root labelled (f

q

00

; �v

00

), where �v

0

� u

0

and �v

00

� u

00

.

Suppose that the transitions from q to q

0

and q

00

our on tape symbol s

i

. From the onstrution of

P

M;x

, the funtion f

q

ontains an exeution path

if ( - ) f TRANSITION(q; s

i

; q

0

); TRANSITION(q; s

i

; q

00

); g

that simulates eah of these transitions by verifying that the tape symbol sanned is s

i

, adjusting the

variables T

i;j

as neessary, and alling the appropriate funtion in P

M;x

. It follows that a tree with

root (f

q

; T

i;j

) that has two subtrees T

0

P

and T

00

P

is a valid all tree for P

M;x

.

The proof in the other diretion is very similar, exept that the indution is on the height of the valid all

trees of P

M;x

.

Corollary 4.2 M aepts x if and only if there is an exeution path p in P

M;x

from the program point

labelled Start to that labelled End suh NoErr = 1 at the end of p.

Proof: We observe that by onstrution of P

M;x

, the ode at the point labelled Start sets NoErr to 1

and initializes the variables T

i;j

aording to the input x.

Suppose that M aepts x, i.e., there is an aepting omputation tree T

M

rooted at q

0

x. It follows

from Theorem 4.1 that there is a valid all tree T

P

for P

M;x

with root (f

q

0

; T

i;j

) where T

i;j

� x. This

means that there is an exeution path in P

M;x

from Start to End suh that NoErr = 1 at End.

Suppose that M does not aept x, i.e., there is no aepting omputation tree T

M

rooted at q

0

x. From

Theorem 4.1, it follows that there is no valid all tree in P

M;x

with root (f

q

0

; T

i;j

) suh that T

i;j

� x. It

follows that there is no exeution path from Start to End along whih the value of NoErr remains 1.

It is easy to show, moreover, that P

M;x

an be generated using O(log jM j+log jxj) spae. The following

result is then immediate:

Corollary 4.3 The inter-proedural single-value problem for Base+Pro+Err is EXPTIME-hard.

It is interesting and instrutive to ompare this result with Theorem 3.5. For the intra-proedural ase on-

sidered in Theorem 3.5, we an use ordinary assignments to program variables to keep trak of whether or

not an exeution path in the program orresponds to a valid aepting omputation of the Turing mahine

being simulated. We don't know whether the same tehnique works in the ase of inter-proedural analysis

of reursive programs: spei�ally, when simulating an alternating Turing mahine, the handling of univer-

sal states seems problemati. Instead, we use a language mehanism|the Error-if-Zero(�) onstrut|that

allows us to aumulate a highly onstrained summary of an exeution path into a variable. This allows

us to determine, from the value of this variable, whether or not anything went wrong at any point in an

exeution path. Notie that even though Corollary 4.3 gives a omplexity result for single-value problems

in Base+Pro+Err, the availability of the Error-if-Zero(�) onstrut in fat allows us to inrementally

aumulate (in a limited way) the values of a number of variables along an exeution path. In fat, while the

(intra-proedural) single-value problem for Base is solvable in polynomial time (Theorem 3.1), adding the

Error-if-Zero(�) onstrut makes it PSPACE-hard; this an be used to simplify the proof of the 1-pointer

ase in Theorem 3.9.

4.1 Appliations to the Complexity of Inter-proedural Dataow Analysis

4.1.1 Inter-proedural Pointer Alias Analyses

The following theorem gives the omplexity of single-value problems for arbitrary programs in

Base+Pro+1ptr. The proof relies on using an indiret assignment through a pointer to set a global

15



variable to 0 if anything \goes wrong" along an exeution path, and thereby simulate the Error-if-Zero(�)

onstrut.

Theorem 4.4 The inter-proedural single-value problem for base variables in Base+Pro+1ptr is

EXPTIME-omplete.

Proof: The proof is by redution from the inter-proedural single-value problem for Base+Pro+Err .

We show how any program P

M;x

in Base+Pro+Err , generated for an ATMM and input x as disussed

in Setion 4, an be translated to a program P

0

in Base+1ptr (here, X

1

; X

2

; : : : denote variables in P

while X

1

; X

2

; : : : denote variables in P

0

):

1. P

0

ontains global variables Zero and One, whih are initialized to 0 and 1 respetively. Additionally,

for eah global variable V in P there is a global pointer variable V in P

0

; in partiular, the distinguished

(base) variable NoErr in P orresponds to a global pointer variable NoErr in P

0

, whih is initialized

to the value &One.

2. For eah n-argument funtion f in P there is an n-argument funtion f in P

0

. For eah suh pair of

orresponding funtions, for eah loal variable V in f there is a loal pointer variable V in f.

3. Assignment statements in P are translated as follows: a statement `X = e' in P translates to the

statement `X = e

0

', where e

0

is given by

e

0

=

8

<

:

&Zero if e � 0

&One if e � 1

Y if e � Y for some variable Y

Funtion alls are translated as follows: a all `f(e

1

; : : : ; e

n

)' translates to `f(e

0

1

; : : : ; e

0

n

)', where the

e

0

i

are given by:

e

0

i

=

8

<

:

&Zero if e

i

� 0

&One if e

i

� 1

Y if e

i

� Y for some variable Y

Conditionals are translated unhanged.

4. A statement Error-if-Zero(X) is translated to `*NoErr = *X.'

5. The single-value problem `NoErr = 0' in P orresponds to the base-variable single-value problem

`One = 1' in P

0

.

Eah variable V in P is translated to a pointer variable V in P

0

; a value of 0 for V in P orresponds to V

being a pointer to the base variable Zero in P

0

, while a value of 1 for V orresponds V being a pointer to

the variable One.

Consider the program P

M;x

generated for a given ATM M and input x. In the orresponding program

P

0

M;x

in Base+1ptr , the variable NoErr is initially set to point to One, whih has the value 1. Now

onsider any exeution path p in P . If p does not ontain any ourrene of a Error-if-Zero(�) statement,

the exeution along the orresponding path in P

0

simply parallels that in P , the only di�erene being

that instead of the values 0 and 1 in P we have &Zero and &One in P

0

. If the path p ontains a state-

ment Error-if-Zero(X) , then the orresponding statement in P

0

is `*NoErr = *X.' We have the following

possibilities:

1. NoErr points to One, X points to One, and the value of One is 1 (orresponding to the variables NoErr

and X in P both having the value 1). In this ase this assignment to *NoErr has no e�et on the

value of any variable in P

0

. This parallels the behavior of P .

16



2. NoErr points to One and X points to Zero (orresponding to X having the value 0 in P ). In this ase

the assignment sets the variable One to have the value 0. This again parallels the behavior of P .

3. NoErr points to One, but the value of One is 0 (due to an assigment orresponding to the previous

ase earlier in the exeution). In this ase, regardless of whether X points to One or to Zero, the

value of *X is 0, so the assignment `*NoErr = *X' does not hange the value of any variable in P

0

. In

partiular this means that *NoErr remains 0. Again, this parallels the behavior of P .

Thus, at the end of the exeution of P

0

, the variable One has the value 1 if and only if, at the end of the

orresponding exeution path in P , the value of NoErr is 1. The redution desribed above establishes

that the inter-proedural single-value problem for base variables in Base+1ptr is EXPTIME-hard.

We next show how a program P in Base+Pro+1ptr an be simulated by a p(n)-spae-bounded ATM

M

P

, where n is the program size. M

P

has its tape divided into four regions: Globals, AntiipatedGlobals,

TempGlobals, and Loals. Globals ontains the urrent snapshot of the global variables. AntiipatedGlobals

shows the Globals as we expet them to be upon return from the urrent subroutine. TempGlobals is an

auxiliary region big enough to hold Globals and AntiipatedGlobals. Loals ontains the ontents of loal

variables and subroutine arguments; the sope of these variables extends only to the end of the urrent

subroutine (parameter passing and returning of results an be ahieved using global variables). These

regions are obviously polynomially bounded by the size of P.

M

P

works as follows: It interprets the urrent subroutine f in P , updating Globals and Loals appro-

priately. When P is nondeterministi beause of uninterpreted onditionals so is M

P

, whih \guesses" one

of the branhes of the onditional to ontinue interpreting (using existential states). When f returns M

P

ompares Globals with AntiipatedGlobals and goes into an aepting state if they are equal and otherwise

into a rejeting state.

The key mehanism is how alls to a subroutine g are simulated. FirstM

P

opies the AntiipatedGlobals

into TempGlobals M

P

then guesses the e�et of the subroutine all on Globals and writes this guess into

AntiipatedGlobals. Immediately after this M

P

swithes into a universal state. One suessor of this

state starts interpreting subroutine g. This omputation branh will reah an aepting state only if

AntiipatedGlobals was guessed orretly. The other suessor ontinues interpreting subroutine f assuming

the all to g behaves as expeted, i.e., it opies AntiipatedGlobals to Globals and TempGlobals bak to

AntiipatedGlobals.

The subroutine main(), where the simulation begins is handled slightly di�erently. At the beginning

of main() Globals is initialized and upon return from main M

P

always enters an aepting state.

It is not hard to see that this will faithfully simulate P. If we interested in solving a single or simultaneous

value problem|whih we assume, without loss of generality, to be posed at the end of main|we an make

M

P

test the ondition at the end of main and either go into an aepting state if the ondition is satis�ed

or in a rejeting state otherwise.

Corollary 4.5 The omplexity of preise inter-proedural pointer alias analysis in the presene of 2-level

pointers is EXPTIME-omplete.

Corollary 4.6 The determination of preise solutions for the following inter-proedural analysis problems

for base variables in Base+Pro+1ptr is EXPTIME-omplete: (a) reahing de�nitions; (b) live vari-

ables; and () available expressions.

4.1.2 Inter-proedural Analysis of Proedures with Referene Formals

Consider extending the language Base along another diretion: instead of allowing expliit pointers, as in

Setion 3.3.1, we allow (non-reursive) funtions with referene formal parameters. It does not ome as a

surprise that an independent attributes analysis is inadequate for solving the single value problem in this

ase. To see this, onsider the following program:

17



var a, b, x: integer;

main()

{

a = 0;

if (...) { x = 0; q(a,x); }

else { x = 1; q(b,x); }

}

pro q(u: ref integer; v: integer)

{

u = v;

}

We want to know whether or not a = 1 an hold immediately after the onditional in main(). We need

a relational attributes analysis of q's arguments in order to determine that q's �rst argument, u, annot

be a referene to a if its seond argument v has the value 1. Thus, an independent attributes analysis is

inadequate for this single value problem. The following result shows that (non-reursive) proedures with

referene parameters an be used to solve arbitrary simultaneous-value problems for Base.

Theorem 4.7 The single value problem for Base extended with proedures with referene parameters is

PSPACE-omplete for non-reursive programs and EXPTIME-omplete for arbitrary programs.

Proof: (sketh) The proof is very similar to that for Theorem 4.4, the primary di�erene being that

instead of expliit pointer variables we use referene parameters. Eah proedure in the program takes

two additional arguments that are referenes to the global variables Zero and One. Instead of expliit

assignments of &Zero and &One, as in the onstrution in the proof of Theorem 4.4, we use these referene

parameters. The remainder of the proof remains essentially unhanged.

Corollary 4.8 Preise inter-proedural liveness analysis and available expressions analysis for Base ex-

tended with proedures with referene parameters are both PSPACE-omplete for non-reursive programs,

and EXPTIME-omplete for arbitrary programs.

Proof: The proof follows the lines of that of Theorem 4.7, modi�ed in a manner analogous to that in

Theorem 3.10.

This result orrets a minor aw in Myers' original proof of the diÆulty of suh analysis problems

[13℄. Myers onsidered inter-proedural analyses in the presene of referene parameters, and laimed to

show NP-ompleteness for liveness analysis and o-NP-ompleteness for available expressions; in fat, he

proved only hardness results. Our results establish that membership in NP holds for ayli non-reursive

programs (Theorem 3.2), but stronger results an be given for general programs.

4.1.3 Inter-proedural Control Flow Analysis of Programs with Funtion Pointers

In this setion we onsider extending Base in another diretion, by adding C-style funtion pointers.

These di�er from general-purpose pointers in that (i) the objets pointed at are funtions, rather than

data; and (ii) the objet obtained by dereferening a funtion pointer annot be modi�ed by the program.

The primary purpose of funtion pointers, therefore, is to a�et ontrol ow. The orresponding analysis

problem is therefore a ontrol ow analysis problem. The following result, whose proof follows the lines of

those for Theorem 3.9 and Corollary 4.5, improves on an NP-hardness result by Zhang and Ryder [17℄:

Theorem 4.9 Preise ontrol ow analysis in the presene of funtion pointers is PSPACE-omplete for

non-reursive programs and EXPTIME-omplete for arbitrary programs.

5 Summary and Related Work

The ontributions of this paper an be summarized as follows:

1. New Results : To the best of our knowledge, the following are are new results: Corollary 3.8, Theorem

3.10(b,), Corollary 4.5, and Corollary 4.6.

18



2. Improvements to Existing Results : Theorem 3.10 and Corollary 4.6 improve on a result by Pande

et al. [15℄. Corollary 4.5 improves on a result by Landi [8, 11℄. Theorem 4.7 and Corollary 4.8 improve

on a result by Myers [13℄.

3. Explanations of Existing Results : Theorems 3.7 and 3.9 explain the underlying reasons for Landi's

omplexity results for pointer alias analysis [8, 11℄. Theorems 3.9 and 3.10(a) together explain why

single-level pointers are hard to deal with when onstruting intra-proedural def-use hains but not

when onsidering intra-proedural pointer analyses. Theorem 4.9 explains the diÆulty of inter-

proedural ontrol ow analysis in the presene of funtion pointers.

The distintion between independent attributes analyses and relational attributes analyses was �rst de�ned

by Jones and Muhnik [6℄, who also examined the omplexity of these approahes to program analysis.

They showed that independent attributes analyses over a �xed �nite domain has worst ase omplexity

that is polynomial in the size of the program, while relational attributes analysis for programs onsisting

of assignments, sequening, and \uninterpreted" onditionals|i.e., where we always assume that either

branh of a onditional may be taken, or, equivalently, that all paths in the program are exeutable|but

not ontaining any loops, is NP-hard [6℄. Variations on the basi idea of this proof have been used for

NP-hardness results by a number of authors [8, 11, 12, 13, 15℄, as well as in the proof of Theorem 3.2 in

this paper. Jones and Muhnik also show that when loops and \interpreted" onditionals are added, the

problem beomes PSPACE-hard. Unfortunately, sine most dataow analyses in pratie treat onditionals

as uninterpreted, the latter result is not diretly appliable to them.

Nielson and Nielson onsider, in a very general denotational setting, the number of iterations neessary

to ompute the least �xpoint of a funtional over a �nite lattie, under various assumptions about the

kinds of funtions onsidered [14℄. By ontrast, our work fouses on the overall omputational omplexity

for ertain kinds of program analyses. While the number of iterations needed to attain a �xpoint is an

important fator in determining the amount of work done by an analysis, it is not the only suh fator,

and hene does not give a omplete piture of the omplexity of an analysis. To see this, observe that if

we restrit our attention to intra-proedural analyses of loop-free programs, the resulting dataow equa-

tions are not reursive, so a single iteration suÆes to ompute the least �xpoint; nevertheless, relational

attributes analyses for suh programs are NP-omplete (Theorem 3.2).

Many researhers have given omplexity results for spei� program analysis problems (see, for example,

[8, 11, 12, 13, 15℄). As disussed earlier, these results do not generally provide insights into the underlying

reasons for the eÆieny, or lak thereof, of the analyses.

6 Conlusions

This paper attempts to eluidate the fundamental reasons why preise solutions to ertain program analyses

are omputationally diÆult to obtain. We give simple and general results that relate the omplexity of

a problem to whether or not it requires a relational attributes analysis. The appliability of this result

is illustrated using a number of analyses disussed in the literature: we are able to derive the omplexity

results originally given by the authors, and in several ases even stronger omplexity results, as diret

orollaries to the results presented here, with little oneptual and notational e�ort.

Aknowledgements

Disussions with William Landi have been very helpful in larifying omplexity questions for pointer alias

analysis.

Referenes

[1℄ A. V. Aho, R. Sethi and J. D. Ullman, Compilers { Priniples, Tehniques and Tools, Addison-Wesley,

1986.

[2℄ J. M. Barth, \A pratial interproedural data ow analysis algorithm", Communiations of the ACM

vol. 21 no. 9, pp. 724{736, 1978.

19



[3℄ A. K. Chandra, D. C. Kozen, and L. J. Stokmeyer, \Alternation", J. ACM vol. 28 no. 1, Jan. 1981,

pp. 114{133.

[4℄ R. Chatterjee, B. G. Ryder, and W. A. Landi, \Complexity of Conrete Type-inferene in the Presene

of Exeptions", Pro. European Symposium on Programming, 1998.

[5℄ M. R. Garey and D. S. Johnson, Computers and Intratability: A Guide to the Theory of NP-

Completeness, Freeman, New York, 1979.

[6℄ N. D. Jones and S. S. Muhnik, \Complexity of ow analysis, indutive assertion synthesis, and a

language due to Dijkstra", In S. S Muhnik and N. D Jones, eds., Program Flow Analysis: Theory

and Appliations, hapter 12, pp. 380{393. Prentie-Hall, 1981.

[7℄ R. E. Ladner, R. J. Lipton, and L. J. Stokmeyer, \Alternating Pushdown Automata", Pro. 19th

IEEE Symposium on Foundations of Computer Siene, Ot. 1978, pp. 92{106.

[8℄ W. A. Landi, Interproedural Aliasing in the Presene of Pointers, Ph.D. Dissertation, Rutgers Uni-

versity, New Brunswik, NJ, Jan. 1992.

[9℄ W. A. Landi, \Undeidability of Stati Analysis", ACM Letters on Programming Languages and

Systems vol. 1 no. 2, De. 1992, pp. 323{337.

[10℄ W. Landi, personal ommuniation, June 1998.

[11℄ W. Landi and B. G. Ryder, \Pointer-indued Aliasing: A Problem Classi�ation", Pro. 18th ACM

Symposium on Priniples of Programming Languages, Jan. 1991, pp. 93{103.

[12℄ J. R. Larus, Restruturing Symboli Programs for Conurrent Exeution on Multiproessors, Ph.D.

Dissertation, University of California, Berkeley, 1989. Also available as Tehnial Report UCB/CSD

89/502, Computer Siene Division (EECS), University of California, Berkeley, May 1989.

[13℄ E. W. Myers, \A Preise Inter-Proedural Data Flow Algorithm", Pro. 8th ACM Symposium on

Priniples of Programming Languages, Jan. 1981, pp. 219{230.

[14℄ H. R. Nielson and F. Nielson, \Bounded Fixed Point Iteration", Pro. Nineteenth ACM Symposium

on Priniples of Programming Languages, Jan. 1992, pp. 71{82.

[15℄ H. D. Pande, W. A. Landi, and B. G. Ryder, \Interproedural Def-Use Assoiations for C Systems

with Single Level Pointers", IEEE Transations on Software Engineering vol. 20 no. 5, May 1994,

pp. 385{403.

[16℄ H. D. Pande and B. G. Ryder, \Stati Type Determination for C++", Pro. Sixth USENIX C++

Tehnial Conferene, April 1994, pp. 85{97.

[17℄ S. Zhang and B. Ryder, \Complexity of single level funtion pointer aliasing analysis", Tehnial

Report LCSR-TR-233, Laboratory of Computer Siene Researh, Rutgers University, Otober 1994.

20


